Содержание

Влияние низкочастотной электростимуляции на регенерацию костной ткани — Центр по лечению асептического некроза

Волков Е.Е. 1, Решетняк В.К. 2, Домарацкая Е.И. 3, Волков А.Е. 4, Кучеряну В.Г. 2, Буторина Н.Н. 3, Паюшина О.В. 3.

Влияние низкочастотной электростимуляции на регенерацию костной ткани

1.Клиника преморбидных и неотложных состояний ФКУ «МУНКЦ»

им. П.В. Мандрыка МО РФ, 121002 Москва,  Серебряный переулок, д.4.

2.ФГБНУ НИИ общей патологии и патофизиологии, 125315 Москва, ул. Балтийская д.8.

3.ФГБНУ Институт биологии развития им. Н.К. Кольцова РАН, 119334, Москва, ул. Вавилова, д. 26.

4.ООО «Медицинский центр ХуанДи», 125252, ул. 2-я Песчаная,  д. 8, пом. 1.

Исследование выполнено на 30 крысах самцах линии Wistar (вес 330 — 360 г, возраст  3,5 мес).   На экспериментальной модели  повреждения бедренной кости в области тазобедренного сустава изучали влияние низкочастотной электростимуляции зоны повреждения на скорость регенерации  кости. Животных разделяли на две группы. Контрольную (15 крыс) и опытную (15 крыс). У опытных животных проводили стимуляцию области травмы по 5 мин. ежедневно в течение 7 сут. 14 сут. и 21 сут. Стимуляцию осуществляли с помощью прибора «Остеон-1» генерирующего смешанный сигнал из двух импульсных напряжений разной скважности, один из которых модулирован более высокой частотой. Сигналы были не синхронизированными относительно друг друга, однополярными с изменяющимися частотами и амплитудами.

Полученные результаты свидетельствуют об эффективности электростимуляции токами низкой частоты при восстановлении костной ткани после повреждения. Морфологические исследования показали, что электростимуляция ускоряют темп регенерации поврежденной кости на всех сроках изучения (7,14,21 сут.), вызывает  более выраженную  интеграцию новообразованной кости со старой неповрежденной  костью и способствуют формированию более мощной периостальной мозоли по сравнению с контролем.

Volkov E. E. 1, V. K. Reshetniak 2, Domaratskai E. I. 3, Volkov A. E. 4, Kucheranu V. G. 2, Butorina N. N. 3, Paulina O. V. A 3.

The effect of low frequency electrical stimulation on bone tissue regeneration

1.Clinic premorbid and emergency conditions FKU «MONKS»
them. P. V. Mandryka MO, 121002 Moscow, Silver lane,4.
2.FSBI research Institute of General pathology and pathophysiology, 125315 Moscow, the Baltic St.8.

3.FSBI Institute of biology of development. N. K. Koltsov Academy of Sciences, 119334, Moscow, Vavilov St,26.
4.LLC «Medical center HuanDi»

The study was performed on 30 male rats of Wistar line (weight 330 — 360 g, age 3.5 months). In an experimental model of damage to the femur bone in the hip joint studied the effect of low frequency electrical stimulation of the damaged area on the rate of regeneration of bone. The animals were divided into two groups. Control (15 rats) and experienced (15 rats). In the experimental animals underwent stimulation of the injury site for 5 min daily for 7 days, 14 days and 21 days. Stimulation was carried out using a device «Osteon-1» generating a mixed signal of two voltage pulse of varying duty cycle, one of which is modulated to a higher frequency. Signals were not synchronized with respect to each other, unipolar with varying frequencies and amplitudes. The obtained results show the effectiveness of the electrical stimulation currents of low frequency in the restoration of bone tissue after damage. Morphological studies showed that electrical stimulation to accelerate the regeneration of damaged bone at all stages of the study (7,14,21 day), causes a more pronounced integration of newly formed bone with the old intact bone and promote the formation of more powerful periosteal calluses in comparison with the control.

В большинстве стран мира отмечается значительное снижение смертности, вследствие этого увеличение продолжительности жизни и, соответственно, старение населения [1]. Однако улучшение деятельности здравоохранения  еще не означает улучшение качества жизни, как  отдельного индивидуума, так и всего общества в целом. [2]. К сожалению, прогресс, достигнутый в увеличении продолжительности жизни, не сопровождается прогрессом в уменьшении инвалидизации пожилых людей.

Следует подчеркнуть, что количество пожилых людей во всем мире стремительно увеличивается.  В частности, в Российской Федерации в настоящее время доля пенсионеров по старости составляет 20,6% [3].

Остеопороз входит в число наиболее актуальных проблем современного здравоохранения. В России остеопорозом страдают 14 млн человек  старше 50 лет. Еще у 20 млн обнаруживается остеопения [4,5]. Остеопороз занимает четвертое место по частоте инвалидизации после болезней сердечно-сосудистой системы, сахарного диабета и онкологических заболеваний.

Согласно данным ВОЗ, этим заболеванием страдают около 75 млн граждан Европы, США и Японии. В связи с постарением населения Европы к 2050 г. ожидается рост количества остеопоротических переломов шейки бедренной кости с 500 тыс. до 1 млн случаев ежегодно [6]. Особенно часто остеопороз встречается у пожилых женщин вследствие снижения уровня половых гормонов.  Помимо переломов отмечается также устойчивый рост дегенеративно-дистрофических заболеваний суставов (остеоартроз, остеопороз, асептический некроз). Заболевания суставов сопровождаются хронической болью. Исследования, проведенные в США показали, что у женщин, испытывающих боль, падения случаются в 1,66 раз чаще [7], а это при остеопорозе в большинстве случаев неизбежно приводит к перелому костей.

Общим патогенетическим  механизмом этой группы заболеваний является – нарушение структуры костной ткани, сопровождающееся сложным локальным или системным нарушением процессов костного ремоделирования.

Все вышесказанное свидетельствует о том, что проблема лечения нарушений костного ремоделирования является актуальной и в связи с нарастающим старением населения все больше актуализируется.

Накопленный опыт медикаментозного лечения  дегенеративно-дистрофических заболеваний показывает, что ни один из существующих в настоящее время лекарственных препаратов не может надежно восстановить количество и качество костной ткани [8]. Кроме того, следует учитывать и тот факт, что у пожилых и старых людей, как правило, имеется целый ряд коморбидных состояний и, соответственно, отмечается вынужденная полипрагмазия. Поэтому в последние десятилетия проводится интенсивный поиск возможностей применения для стимуляции остеогенеза не фармакологических, а физических методов: переменного электромагнитного поля высокой и низкой частоты, постоянного электрического тока, ультразвука, имеющих ряд преимуществ при их практическом применении [9-11]. Преимуществами этих методов воздействия являются: безопасность, возможность длительного многофакторного воздействия, отсутствие привыкания.

Опыт лечения некроза головки бедренной кости показал, что внешние электрические сигналы могут вызывать клеточную реакцию, приводящую к  реконструкции поврежденной кости [12-15].

Учитывая результаты многочисленых экспериментальных и клинических исследований свидетельствующих об эффективном действии электростимуляции на различные системы организма  и, в частности, на снижение тугоподвижности суставов, спастичности мышц и подавлении болевого синдрома после переломов,  ускорение  регенерации кости [9, 16-18]  был разработан аппарат «Остеон-1» для эффективного восстановления структуры костной ткани [13].

Цель настоящей работы — гистологическое исследование эффективности восстановления костной ткани при стимуляции поврежденной кости животных с помощью прибора «Остеон-1».

Методика

Работа выполнена на 30 крысах-самцах линии Wistar (вес 330 — 360 г, возраст  3,5 мес).  Крыс содержали в стандартных условиях по 5 особей в клетке с контролируемыми режимами температуры (24 oC) и освещения (в течение 12 ч) и со свободным доступом к воде и пище. Операцию по моделированию травмы проводили под общим наркозом. Сначала животных анестезировали легким эфирным наркозом. Для более глубокого наркоза,  использовали хлоралгидрат, внутрибрюшино, в дозе 300 мг/кг. Затем животное фиксировали на операционном столике, состригали шерсть в области левого бедра и скальпелем разрезали  кожу и мышечную ткань. Бедренную кость в области тазобедренного сустава обнажали, просверливали бедренную кость до костномозгового канала на 8-10 мм дистальнее сутава с помощью миниатюрной стоматологической бормашины (диаметр бора 0,8 мм). После повреждения кости производили послойное ушивание мягких тканей.  Животных разделяли на две группы. Контрольную (15крыс) и опытную (15 крыс).  У подопытных животных с помощью прибора «Остеон-1» проводили стимуляцию области травмы по 5 мин ежедневно в течение 7 сут. (оп7), 14 сут. (оп14) и 21 дня (оп21). Для этого животных фиксировали на операционных столиках и через введенные под кожу хирургические иглы подавали смешанный сигнал из двух импульсных напряжений разной скважности, один из которых модулирован более высокой частотой. Сигналы были не синхронизированными относительно друг друга, однополярными с изменяющимися частотами и амплитудами. Катод располагался в области травмы, анод помещался на ту же лапу дистальнее. Электростимуляцию осуществляли под общим наркозом (хлоралгидрат в дозе 190-200 мг/кг, внутрибрюшинно).

Три группы животных с нанесенной травмой служили контролем (к7,  к14,  к21), они также располагались на препаровальных столиках, им вводились хирургические иглы, но стимуляция не осуществлялась. В каждом варианте опыта использовали по 5 животных. На следующий день по окончании исследований животные выводились из эксперимента путем цервикальной дислокации. Затем извлекали бедренные кости всех 6-ти групп, которые использовали для гистологического анализа и оценки выраженности патологического процесса и процесса остеогенеза.

Кости животных фиксировали 24 часа при комнатной температуре в 10% формалине, приготовленном на фосфатно-солевом буфере (ФСБ, 0,02М, рН7.6). Декальцинировали в 5% трихлоруксусной кислоте 48 часов, затем промывали в ФСБ и замораживали в изопентане при -400С. Далее приготавливали срезы толщиной 5 мкм. Срезы высушивали при комнатной температуре в течение 1 часа и окрашивали гематоксилин-эозином. Для гистологического анализа от каждого животного было изготовлено от 100 до 200 серийных срезов бедренной кости, сделанных в поперечном и продольном направлениях. С помощью микроскопа Олимпус (ок. 10х, об. 4х). делали микрофотографии срезов костной ткани. Морфометрический анализ костной ткани внутри раневого канала (интермедиарная костная мозоль) осуществляли с помощью программы ImageJ [19]. Площадь костной ткани, измеренной на  3-5 срезах от каждого животного, выражали в % от площади канала. Для определения достоверности различий между опытом и контролем использовали непараметрический двусторонний критерий Манна-Уитни (U-тест).

Результаты и обсуждение

Регенерация костной ткани у контрольных животных.

Результаты морфологических исследований свидетельствуют что, в группе контрольных животных новая кость образуется  в области периоста, эндоста и костномозговой полости на 7 сутки после нанесения травмы (рис.1). Начало восстановления осуществляется в области периоста через фазу энхондрального окостенения. В этот период в области периоста происходит активная пролиферация клеток и число слоев остеогенных клеток многократно увеличивается, в то же время   в надкостнице интактной кости присутствует лишь один  слой этих клеток. Область повреждения заполняется  молодой губчатой костью (интермедиарная мозоль).

1

Рис.1. Контроль 7 суток. Раневой канал заполнен губчатой костью, кроветворные клетки отсутствуют. Видна внутренняя костная мозоль.

На 14 сутки, между трабекулами интермедиарной мозоли выявляются кроветворные клетки.  Внутри полости бедренной кости начинается формирование внутренней (эндостиальной) костной мозоли,  характеризующейся выраженным разрастанием молодой губчатой кости с полостями, заполненными рыхлой соединительной тканью и кровеносными сосудами.

В последующий период происходит некоторое замедление процесса регенерации костной ткани. Так на 21 сутки после повреждения, по сравнению с 14 суточным периодом наблюдений, существенных изменений в морфологической картине восстановления костной ткани не отмечается, за исключением формирования наружной периостальной мозоли. В костномозговой полости присутствует эндостиальная мозоль, представленная губчатой костью, иногда пронизывающей всю полость диафиза в области повреждения. Наблюдается частичное заполнение области повреждения губчатой костью распространяющейся на поверхность бедренной кости и формирующей наружную костную мозоль. Между трабекулами губчатой кости обнаруживаются многочисленные кроветворные клетки костного мозга. (рис.2).

2

Рис.2. Контроль 21 сутки. Видны периостальная, эндостиальная  и интермедиарная  костные мозоли.  Присутствуют многочисленные кроветворные клетки.

Регенерация костной ткани у подопытных животных.

На 7 сутки электростимуляции в группе подопытных животных в области повреждения развивается мощная губчатая кость и присутствуют признаки закрытия внешнего отверстия раневого канала  костью. В отличие от контроля, в периосте, хондрогенез практически не выражен. В то же время отмечается распространение новообразующейся кости внутри полости кости до ее неповрежденной стенки (эндостиальная мозоль), а интермедиарная мозоль, начинает интегрироваться со старой пластинчатой костью, окружающей  повреждение, способствуя  укреплению поврежденной кости. В отличие от контрольных животных уже на 7 сутки электростимуляции отмечается наличие кроветворных клеток внутри трабекул вновь образованной кости. Как было сказано выше такой эффект у контрольных животных отмечается только на 14 сутки. Эти результаты  свидетельствуют о большей скорости регенерации по сравнению с костной тканью контрольной группы животных. (рис.3).

3

Рис.3. Опыт 7 суток. Формирование интермедиарной и эндостиальной мозолей. Область повреждения заполнена губчатой костью. Между трабекулами новообразованной костной ткани присутствуют кроветворные клетки.

К 14-м суткам процесс регенерации активно развивается. Канал повреждения полностью заполняется довольно мощной губчатой костью. В её полостях появляются многочисленные кроветворные клетки. Сформированная кость уже интегрируется со стенкой раневого канала.

На 21-е сутки электростимуляции отмечается укрепление наружных стенок раневого канала новообразованной костной тканью. Наблюдается формирование уже хорошо выраженной, мощной периостальной костной мозоли. Она простирается на значительное расстояние вдоль кости. Это убедительно свидетельствует, что электростимуляция значительно ускоряет  ее образование, по сравнению с контролем.  На существенную активизацию остеогенеза указывает также формирование нескольких слоев остеобластов в надкостнице (рис. 4).

4

Рис.4. Опыт 21 сутки.Раневой канал полностью закрыт. Видна мощная периостальная костная мозоль.

Полученные результаты морфологического исследования позволяют прийти к заключению о том, что через 21 сут. от момента начала эксперимента в группе контрольных животных отмечается относительно слабое костеобразование внутри канала повреждения, хотя костная мозоль на поверхности кости сформирована, а внутренняя костная мозоль сохраняется. У подопытных животных, в  отличие от контрольной группы, наблюдается более интенсивное костеобразование — более мощная наружная мозоль и значительно большая степень закрытия раневого канала.

Как уже было сказано выше одним из эффективных методов воздействия на регенерацию костной ткани  является электрическая и электромагнитная стимуляция.

Регенерация кости в значительной степени зависит от успешного завершения воспалительного процесса, васкуляризации в месте повреждения, секреции остеогенных и хондрогенных факторов, ремоделирования внеклеточного матрикса в поврежденной и вновь образованной костной ткани. Успешное завершение воспалительного процесса, васкуляризация в месте повреждения невозможны без нормализации микроциркуляции. Электростимуляция играет ведущую роль в устранении дизрегуляции микроциркуляторного звена кровообращения как во всем организме, так и в костных тканях. Это системный процесс [17].

Активирующее влияние электрического потенциала на клетки организма обусловлено изменением концентрации ионов по обе стороны клеточной мембраны, что приводит к изменению функционального состояния клетки. Это происходит в результате трансмембранного сигналинга, активации ионных каналов и стимуляции или блокады различных рецепторов [20]. Электрическое или электромагнитное поля способны усиливать экспрессию генов, синтез ростовых факторов и, в частности факторов, участвующих в энхондральном окостенении, через ауто- и паракринные сигналы. При этом может усиливаться продукция морфогенетического белка кости (MBP), трансформирующего фактора роста (TGF-β), инсулиноподобного фактора (IFG II), что увеличивает продукцию внеклеточного матрикса хряща и кости [21].  In vitro показано, что воздействие импульсного электромагнитного поля на культивируемые in vitro остеобласты линии MC3T3-E1 стимулирует образование костной ткани, что выражается в повышенной активности щелочной фосфатазы и отложении минерализованного матрикса [22].  На сегодняшний день можно считать доказанным, что интенсивность остеорепарации при электростимуляции обусловлена околоэлектродными электрохимическими, биофизическими и биохимическими реакциями и индуцированными ими общими нейрогуморальными воздействиями на остеогенез.

Наиболее сильное раздражающее действие на биологические системы оказывает импульсный ток, так как импульсные воздействия в определенном заданном ритме соответствуют физиологическим ритмам функционирующих органов и систем  [23]. Импульсный ток низкой частоты успешно применяется в ортопедии для стимуляции регенеративных процессов  в кости при переломах [11,24,25].

Клиническое применение электрического и электромагнитного стимулирования улучшает регенерацию кости на клеточном уровне. Это проявляется во  взаимодействии клеток с окружающей средой, воздействии факторов роста и работе системы сигнальной трансдукции [21].

Полученные в настоящей работе результаты свидетельствуют об эффективности электростимуляции токами низкой частоты, генерируемыми прибором «Остеон-1»,   для восстановления костной ткани после повреждения. Морфологические исследования показали, что данные параметры электростимуляции ускоряют темп регенерации поврежденной кости, вызывают  более выраженную  интеграцию новообразованной кости со старой неповрежденной  костью и способствуют формированию более мощной периостальной мозоли по сравнению с контролем.

Список литературы

  1. McMichael A.J., McKee M., Shkolnicov V., Valkonen T. Mortality trends and setbacks: global convergence or divergence? 2004; 363: 1155 – 1159.
  2. Turner J.A. Research on cognitive-behavioral therapies for older adults with chronic pain: In its infancy, but growing. 2013; 154: 771 – 772.
  3. Щегорцов А.А. Стратегическое планирование качества жизни пожилых граждан. Вестник Российской ассоциации геронтологов и гериатров. 2014; 1: 14 – 20.
  4. Михайлов Е.Е., Беневоленская Л.И. В кн.: Руководство по остеопорозу. Под ред. Л.И. Беневоленской. М: БИНОМ 2003; 10—55.
  5. Лесняк О.М. Аудит состояния проблемы остеопороза в Российской Федерации. Профилактическая медицина. 2011; 2: 7-10.
  6. Руденко Э.В., Буглова А.Е., Руденко Е.В., Самоховец О.Ю. Медикаментозное лечение остеопороза у взрослых. Учебно-методическое пособие, Минск: БелМАПО, 2011 — 22 с.
  7. Leveille S.G. Musculoskeletal pain and risk for falls in jlder disabled women living in the community. J.Am.Geriatr. Soc. 2002; 50: 671 – 675.
  8. Чернов, Ю.Н., Пешехонова Л.К., Батищева Г.А. Остеопороз: критические звенья патогенеза и пути фармакологической коррекции. https://medi.ru/doc/ В мире лекарств. 2000;
  9. Резник Л.Б., Рожков К.Ю., Ерофеев С.А. и др. Применение физических факторов для оптимизации костной регенерации (обзор литературы). Журнал клинической и экспериментальной ортопедии им. Г.А. Илизарова. 2015; 1: 89-95.
  10. Городниченко А.И., Городецкий И.Г.. Решетняк В.К.. Турзин П.С., Усков О.Н. Интерактивная электростимуляция в лечении травматолого-ортопедических больных. Кремлевская медицина. Клинический вестник. 2005; 4: 76-81.
  11. Городниченко А.И., Городецкий И.Г.. Решетняк В.К.. Турзин П.С., Ушаков И.Б., Усков О.Н. Применение интерактивной электростимуляции у больных с переломами лодыжек в постоперационном периоде. Профилактическая медицина. 2009; 12 (1): 38 -41.
  12. Волков Е.Е., Кэцинь Хуан, Асептический некроз головки бедренной кости. Безоперационное лечение. – М., OOO “Пиар-пресс”. 2010;
  13. Волков Е.Е. Возможная альтернатива эндопротезированию тазобедренных суставов при асептическом некрозе головки бедренной кости, Рефлексотерапия и комплементарная медицина. 2013; 3: 26-34.
  14. Mahmud F.A., Hastings G.W., Martini M. Model to characterize strain generated potentials in bone. J.Biomed. Eng. 1988; 10 (1):  54-56.
  15. Huang L.Q, He H.C., He C.Q., et al. Clinical update of pulsed electromagnetic fields on osteoporosis. J. Orthop. Res. 2008; 26 (9): 1250-125
  16. Дуринян Р.А., Решетняк В.К., Зарайская С.М. Нейрофизиологические механизмы иглоукалывания. Мед. Реф. Журнал. 1981; 5: 13-20.
  17. Решетняк В.К., Кукушкин М.Л., Мeйзеров Е.Е. Нейрофизиологическое обоснование параметров электроакупунктурной, электропунктурной и чрезкожной электростимуляции при лечении болевых синдромов. В кн: Итоги и перспективы развития традиционной медициы в России. Москва. 2002: 122 – 125.
  18. Ткаченко  С.С., Руцкий В.В. Электростимуляция остеорепарации. Л.: Медицина. 1989: 207 с.
  19. Abramoff M.D., Magelhaes P.J., Ram S.J. Image processing with ImageJ. Biophoton. Int. 2004; 11: 36–42.
  20. Aaron R.K., Boyan B.D., Ciombor D.M., et al. Stimulation of growth factor synthesis by electric and electromagnetic fields. Bioelectromagnetics. 2004; 25 (2): 134-41.
  21. Haddad J.B., Obolensky A.G., Shinnick P. The biologic effects and the therapeutic mechanism of action of electric and electromagnetic field stimulation on bone and cartilage: new findings and a review of earlier work. Electromagn Biol Med. 2007; 26 (3): 167-1
  22. Diniz P., Shomura K., Soejima K., Ito G. Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2002; 49 (1): 33-3
  23. Решетняк В.К. Нейрофизиологические основы боли и рефлекторного обезболивания. В кн: Итоги науки и техники. Физиол.человека и животных. Москва. 1985; 29: 39-109.
  24. Schwartz Z, Fisher M, Lohmann CH, et al. Osteoprotegerin (OPG) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates. Chin. Med. J. (Engl). 2008; 121(20): 2095-209
  25. Chen K., Hao J., Noritake K., et al. Low intensity pulsed ultrasound stimulation (LIPUS) has been clinically applied to promote bone fracture healing in the orthopedic field.  Open Journal of Regenerative Medicine. 2013; 2 (1): 8-14.

References

  1. McMichael A.J., McKee M., Shkolnicov V., Valkonen T. Mortality trends and setbacks: global convergence or divergence?  Lancet. 2004; 363: 1155 – 1159.
  2. Turner J.A. Research on cognitive-behavioral therapies for older adults with chronic pain: In its infancy, but growing.  Pain. 2013; 154: 771 – 772.
  3.  Shegortcev А.А. Strategic planning the quality of life of older citizens. Vestnik Rosiiskoy asociacii gerontologov i geriatrov. 2014; 1: 14 – 20.
  4. Мihailov Е.Е., Benevolenskai L.I. In book: Guide to osteoporosis. Ed: Benevolenskai L.I. М: BINOM 2003; 10—55.
  5. Lesnyak О.М. Audit & problems of osteoporosis in the Russian Federation. Profilaktisheskai medicina. 2011; 2: 7-10.
  6. Rudenko A.V., Buglova А.Е., Rudenko Е.V., Samohovetc О.U. Drug treatment of osteoporosis in adults. Textbook. Мinsk: BеlМАPО, 2011 — 22 с.
  7. Leveille S.G. Musculoskeletal pain and risk for falls in jlder disabled women living in the community. J.Am.Geriatr. Soc. 2002; 50: 671 – 675.
  8. Chernov U.N., Pechehonova L.К., Baticheva G.А. Osteoporosis: a critical pathogenesis and ways of pharmacological correction. V mire lekarstv. 2000;
  9. Reznik L.B., Rochkov K.U., Еrofeev С.А. et al. The application of physical factors for the optimization of bone regeneration (literature review). Jurnal klinicheskoi I eksperimentalnoy ortopedii of name G.A. Ilizarova. 2015;  1: 89-95.
  10. Gorodnichenko А.I., Gorodeckiy I.G., Rechetniak V.К.,  Тurzin P.S., Uskov О.N. Interactive electrical stimulation in the treatment of trauma and orthopedic patients. Кremlevskai medicina. Clinichtskii vestnik. 2005; 4: 76-81.
  11. Gorodnichenko А.I., Gorodeckiy I.G., Rechetniak V.К., Тurzin P.S., Uchakov I.B., Uskov О.N. The interactive application of electrical stimulation in patients with fractures of the ankles in the postoperative period. Profilacticheskai medicina. 2009; 12 (1): 38 -41.
  12. Volkov Е.Е., Кecin Huan. Aseptic necrosis of the femoral head. Non-surgical treatment.– М., OOO “Piar-press”. 2010;  128.
  13. Volkov Е.Е. A possible alternative to hip replacement in avascular necrosis of the femoral head. Refleksoterapia I komplementarnai medicina. 2013; 3: 26-34.
  14. Mahmud F.A., Hastings G.W., Martini M. Model to characterize strain generated potentials in bone. J.Biomed. Eng. 1988;  10 (1):  54-56.
  15. Huang L.Q, He H.C., He C.Q., et al. Clinical update of pulsed electromagnetic fields on osteoporosis. J. Orthop. Res. 2008; 26 (9): 1250-1255.
  16. Durinian R.А., Rechetniak V.К.,  Zaraiskai S.М. Neurophysiological mechanisms of acupuncture.Мed. Ref. J. 1981; 5: 13-20.
  17. Rechetniak V.К., Кuкuchkin М.L., Мeizerov Е.Е. Neurophysiologic basis of parameters electroacupuncture, electroacupuncture and transcutaneous electrical stimulation in the treatment of pain syndromes. V knige: Itogi I perspektivi razvitia tradicionnoi medicini v Rosii. Моskva. 2002: 122 – 125.
  18. Ткаchenko S.S.,Ruckii V.V.Electrical stimulation osteoreparation.L.: Medicina. 1989: 207 p.
  19. Abramoff M.D., Magelhaes P.J., Ram S.J. Image processing with ImageJ. Biophoton. Int. 2004; 11: 36–42.
  20. Aaron R.K., Boyan B.D., Ciombor D.M., et al. Stimulation of growth factor synthesis by electric and electromagnetic fields. Bioelectromagnetics. 2004; 25 (2):  134-41.
  21. Haddad J.B., Obolensky A.G., Shinnick P. The biologic effects and the therapeutic mechanism of action of electric and electromagnetic field stimulation on bone and cartilage: new findings and a review of earlier work. Electromagn Biol Med. 2007; 26 (3): 167-177.
  22. Diniz P., Shomura K., Soejima K., Ito G. Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2002; 49 (1):  33-37.
  23. Rechetniak V.К., Neurophysiological bases of pain and reflex analgesy. V knige: Itogi nauki I techniki. Physiol. Cheloveka I chivotnich. Моsкvа. 1985; 29: 39-109.
  24. Schwartz Z, Fisher M, Lohmann CH, et al. Osteoprotegerin (OPG) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates. Chin. Med. J. (Engl). 2008; 121(20): 2095-2099.
  25. Chen K., Hao J., Noritake K., et al. Low intensity pulsed ultrasound stimulation (LIPUS) has been clinically applied to promote bone fracture healing in the orthopedic field.  Open Journal of Regenerative Medicine. 2013; 2 (1): 8-14.

Сведения об авторах:

  1. Волков Евгений Егорович — заведующий отделением традиционной медицины Клиники преморбидных и неотложных состояний ФКУ «МУНКЦ» им. П.В. Мандрыка МО РФ, главный врач ООО « Медицинский центр ХуанДи», кандидат медицинский наук.
  2. Решетняк Виталий Кузьмич- заведующий лабораторией общей патологии нервной   системы ФГБНУ НИИ общей патологии и патофизиологии, доктор медицинский наук, профессор, член-корреспондент РАН.
  3. Кучеряну Валериан Григорьевич- главный научный сотрудник лаборатории общей патологии нервной системы ФГБНУ НИИ общей патологии и патофизиологии, доктор медицинских наук.
  4. Домарацкая Елена Ивановна — заведующая лабораторией клеточных и молекулярных основ гистогенеза ФГБНУ Института биологии развития им. Н.К. Кольцова РАН, доктор биологических наук.
  5. Паюшина Ольга Викторовна — старший научный сотрудник лаборатории клеточных и молекулярных основ гистогенеза ФГБНУ Института биологии развития им. Н.К. Кольцова РАН, кандидат биологических наук
  6. Буторина Нина Николаевна — старший научный сотрудник лаборатории клеточных и молекулярных основ гистогенеза ФГБНУ Института биологии развития им. Н.К. Кольцова РАН, кандидат биологических наук
  7. Волков Андрей Евгеньевич – сотрудник ООО « Медицинский центр ХуанДи»

Репаративная регенерация костной ткани

Регенерация костной ткани может быть физиологической и репаративной. Физиологическая регенерация заключается в перестройке костной ткани, в процессе которой происходит частичное или полное рассасывание костных структур и создание новых. Репаративная (восстановительная) регенерация наблюдается при переломах костей. Этот вид регенерации является истинным, так как образуется нормальная костная ткань.

Восстановление целостности поврежденной кости происходит путем пролиферации клеток камбиального слоя надкостницы (периоста), эндоста, малодифференцированных плюрипотентных клеток стромы костного мозга, а также в результате метаплазии малодифференцированных мезенхимных клеток параоссальных тканей. Последний вид репаративной регенерации костной ткани наиболее активно проявляется за счет мезенхимных клеток адвентиции врастающих кровеносных сосудов. По современным представлениям, остеогенными клетками-предшественниками являются остеобласты, фибробласты, остеоциты, парациты, гистиоциты, лимфоидные, жировые и эндотелиальные клетки, клетки миелоидного и эритроцитарного ряда. В гистологии принято называть костеобразование, возникающее на месте волокнистой соединительной ткани, десмальным; на месте гиалинового хряща — энхондральным; в области скопления пролиферирующих клеток скелетогенной ткани — костеобразованием по мезенхимному типу.

Повреждение костной ткани сопровождается общими и местными изменениями после травмы; посредством нейрогуморальных механизмов в организме включаются адаптационные и компенсаторные системы, направленное на выравнивание гомеостаза и восстановление поврежденной костной ткани. Образующиеся в зоне перелома продукты распада белков и других составных частей клеток являются одним из пусковых механизмов репаративной регенерации. Среди продуктов распада клеток наибольшее значение имеют химические вещества, обеспечивающие биосинтез структурных и пластических белков. В последние годы доказано (А. А. Корж, А. М. Белоус, Е. Я. Панков), что такими индукторами являются вещества нуклеиновой природы (рибонуклеиновая кислота), которые влияют на дифференцировку и биосинтез белков в клетке.

В механизме репаративной регенерации костной ткани выделяют следующие стадии:
1) катаболизм тканевых структур, дедифференцирование и пролиферация клеточных элементов;
2) образование сосудов;
3) образование и дифференцирование тканевых структур;
4) минерализация и перестройка первичного регенерата, а также реституция кости.

В зависимости от точности сопоставления отломков костей, надежного и постоянного их обездвиживания, при сохранении источников регенерации и прочих равных условиях наблюдаются различия в васкуляризации костной ткани. Выделяют (Т. П. Виноградова, Г. Н. Лаврищева, В. И. Стенула, Э. Я. Дубров) 3 вида репаративной регенерации костной ткани: по типу первичного, первично-задержанного и вторичного сращения костных отломков. Сращение костей по первичному типу происходит при наличии небольшого диастаза (50— 100 мкм) и полном обездвиживании сопоставленных отломков костей. Сращение отломков наступает в ранние сроки путем непосредственного формирования костной ткани в интермедиарном пространстве.

В диафизарных отделах костей на раневой поверхности отломков образуется скелетогенная ткань, продуцирующая костные балки, что приводит к возникновению первичного костного сращения при малом объеме регенерата. При этом в регенерате на стыке костных концов не отмечается образования хрящевой и соединительной тканей. Такой вид сращения костей, с образованием минимальной периостальной мозоли, когда соединение отломков происходит непосредственно за счет костных балок, является наиболее совершенным. Этот вид сращения может наблюдаться при переломах без смещения отломков, под надкостничных переломах у детей, применении прочного внутреннего и чрескостного компрессионного остеосинтеза.

Первично-задержанный тип сращения имеет место при отсутствии щели между прочно фиксированными неподвижными костными отломками и характеризуется ранним, но лишь частичным сращением в области сосудистых каналов при внутриканальном остеогенезе. Полному интермедиарному сращению отломков предшествует резорбция их концов.

При вторичном типе сращения, когда вследствие неудовлетворительного сопоставления и фиксации отломков имеются подвижность между ними и травматизация новообразованного регенерата, костная мозоль формируется главным образом со стороны периоста, проходя десмальную и энхондралъную стадии. Периостальная костная мозоль обездвиживает отломки, и только затем происходит сращение непосредственно между ними.

Степень фиксации отломков костей определяется соотношением величины смещающих усилий и усилий, препятствующих этому смещению (В. И. Стецула). Если избранный метод фиксации отломков костей обеспечит полное сопоставление отломков, восстановление продольной оси кости, а также преобладание сил, препятствующих их смещению, фиксация будет надежной. Для сохранения в период формирования сращения постоянной неподвижности на стыке отломков необходимо применять средства фиксации, позволяющие создать значительное превышение величины устойчивости отломков над смещающими усилиями. Запас устойчивости отломков дает возможность рано приступить к активной функции и нагрузке на конечность. Сдавление отломков между собой (компрессия) непосредственно не стимулирует репаративную регенерацию, а усиливает степень обездвиживания, чем способствует более быстрому образованию костной мозоли. В зависимости от степени сдавления отломков, по данным В. И. Стецулы, репаративная регенерация костной ткани протекает различно. Слабая компрессия (45 — 90 Н/см2) не обеспечивает достаточной неподвижности отломков, сращение отломков и сроки его приближаются к вторичному типу. Создание значительной компрессии (250 — 450 Н/см2) приводит к уменьшению щели между отломками и резорбции их концов, к замедлению образования костной мозоли между ними. В этом случае регенерация протекает по типу первичнозадержанного сращения. Наиболее оптимальные условия для репаративной регенерации костной ткани создаются при компрессии средней величины (100 — 200 Н/см2).

Процесс восстановления костей после травмы определяется целым рядом факторов. У детей сращение костей происходит быстрее, чем у взрослых. Имеют значение анатомические условия (наличие надкостницы, характер кровоснабжения), а также тип перелома. Косые и винтообразные переломы срастаются быстрее, чем поперечные. Благоприятные условия для сращения костей создаются при вколоченных и поднадкостничных переломах.

Уровень репаративной регенерации костной ткани во многом определяется степенью травматизации тканей в области перелома: чем больше повреждены источники костеобразования, тем медленнее протекает процесс образования костной мозоли. Учитывая последнее обстоятельство, при лечении переломов следует отдать предпочтение методам, не связанным с нанесением дополнительной травмы в области перелома, а оперативные вмешательства не должны быть травматичными.

В формировании костной мозоли большое значение имеет и соблюдение механических факторов: точного сопоставления, создания контакта и надежного обездвиживания отломков. При остеосинтезе основным условием для сращения костей является неподвижность отломков.

При наружном чрескостном остеосинтезе за счет сдавления и фиксации на протяжении отломков костей спицами, закрепленными в аппарате, на стыке отломков создаются неподвижность и оптимальные условия для формирования первичного костного сращения. На стыке костных отломков формирование сращения начинается с образования эндостального костного сращения, периостальная реакция появляется значительно позже. Точная репозиция и стабильная фиксация отломков аппаратом создают условия к компенсации внутрикостного и местного кровотока, а ранняя нагрузка способствует нормализации трофики. При дистракции вначале возникают условия для формирования костного регенерата между медленно растягиваемыми отломками, а затем формируется костное сращение на стыке регенератов (В. И. Стецула). Установлено, что при дистракции возникает локальный остеопороз, при компрессии этого не наблюдается. Обездвиживание отломков достигается жесткостью аппарата, а также натяжением тканей, связывающих отломки, и мышечных футляров. В этих условиях запас устойчивости отломков возрастает до величин, необходимых для создания постоянной неподвижности и завершения «вторичной» оссификации регенерата.

При дистракции условия формирования между отломками вторичного костного сращения создаются в результате непосредственного обездвиживания костных отломков и «репаративного остеогенеза». В метаэпифизарных отделах костей, имеющих хорошее кровоснабжение, при прочном компрессионном остеосинтезе в короткие сроки происходит сращение по всей площади соприкосновения отломков. При диафизарных переломах репаративная реакция начинается в отдалении от места перелома, а на месте перелома появляется с восстановлением кровоснабжения. Вначале формируется эндостальное, а затем, несколько позже, периостальное сращение. Интермедиарное сращение образуется после восстановления кровоснабжения и расширения сосудистых каналов в концах отломков, в которых формируются новые остеоны (В. И. Стецула). При косых и винтообразных диафизарных переломах с хорошо сопоставленными отломками, когда сохраняется непрерывность костного мозга и внутрикостных сосудов, непосредственно в зоне перелома формируется быстрое костное сращение.

При дистракции оптимальные условия для репаративной регенерации костной ткани создаются в условиях неподвижности отломков и медленной дистракции. При несоблюдении этих условий диастаз заполняется волокнистой соединительной тканью, постепенно превращающейся в фиброзную ткань, а при выраженной подвижности отломков образуется также хрящевая ткань и формируется ложный сустав. При дозированной дистракции и неподвижности отломков диастаз между костными концами заполняется низкодифференцированной скелетогенной тканью, образующейся в условиях пролиферации стромы костного мозга. Новообразование костных балок появляется на обоих отломках, продолжается весь период дистракции на вершинах костной части регенерата, соединенных между собой коллагеновыми волокнами. С увеличением диастаза и созреванием обеих костных частей регенерата процесс новообразования продолжается на границе с соединительнотканной прослойкой путем отложения костного вещества на поверхности пучков коллагеновых волокон (десмальная оссификация).

Увеличение размеров регенерата в процессе его удлинения происходит за счет новообразования коллагеновых волокон в самой соединительнотканной прослойке; соединительнотканная прослойка в дистракционном регенерате выполняет функцию «зоны роста» (В. И. Стецула). После прекращения дистракции, при условии сохранения неподвижности отломков, фиброзная прослойка на стыке костных регенератов подвергается путем десмальной оссификации замещению костной тканью и последующей органной перестройке. В процессе лечения органной перестройке костной ткани и минерализации способствует дозированная нагрузка на конечность. При отсутствии неподвижности отломков процесс оссификации соединительнотканной прослойки резко задерживается и на границе ее с костными частями регенерата формируются замыкающие пластинки. При выраженной неподвижности отломков наступает частичная резорбция концов костных регенератов с замещением фиброзной тканью, может образоваться ложный сустав.

При удлинении различных сегментов конечностей и при разных уровнях остеотомии процесс формирования регенерата и перестройка его протекают однотипно. Однако в зависимости от уровня пересечения кости дистракцию начинают не сразу после операции, а только после соединения костных отломков новообразованной соединительной тканью. При вмешательстве на уровне метафиза ее начинают после операции через 5 — 7 дней, а диафиза — через 10—14 дней.

С помощью аппаратов оказалось возможным постепенное разъединение на уровне зоны роста эпифиза и метафиза костей. Такой способ удлинения трубчатых костей получил название дистракционного эпифизеолиза.

При дистракционном эпифизеолизе формирование регенерата протекает неодинаково. Чем крупнее участок кости, отрывающийся с зоной роста при остеоэпифизеолизе, тем активнее протекает репаративная регенерация костной ткани. Когда с пластинкой роста отрывается небольшое количество костной ткани, диастаз в основном заполняется регенератом, образующимся со стороны метафиза. Формирование костного регенерата на месте удлинения происходит также со стороны надкостницы и эпифиза.

Уровень репаративной регенерации костной ткани во многом зависит от степени травматизации тканей в области перелома: чем больше повреждены источники костеобразования, тем медленнее протекает процесс образования костной мозоли. Поэтому при лечении пострадавших с переломами предпочтительны методы, не связанные с нанесением дополнитель¬ной травмы.

В период формирования костной мозоли важно соблюдать механические факторы: точное сопоставление, создание контакта и надежного обездвиживания отломков.

В современных условиях имеется возможность способствовать улучшению условий репаративной регенерации костной ткани. Для этих целей применяют анаболические стероиды, электромагнитное поле, некоторые препараты.

Анаболические стероиды (ретаболил) влияют на процессы белкового обмена, способствуют синтезу белка, препятствуют развитию в организме посттравматических катаболических процессов и могут положительно влиять на процессы репаративной регенерации костной ткани. Особенно это влияние проявляется, когда репаративные процессы бывают по тем или иным причинам заторможены. Ретаболил вводят внутримышечно по 1 ампуле 3 раза с 10-дневным интервалом.

Электромагнитное поле создают искусственным путем: в одних случаях погружают в костную ткань специальные электроды и подключают к ним внешний источник питания, в других — с помощью магнитов. В последнем случае часть конечности, подлежащую воздействию, помещают в зону электромагнитного поля. Эффект зависит от многих условий: силы электромагнитного поля, частоты и продолжительности действия. Имеет значение и период репаративной регенерации кости. Проблема эта находится в стадии интенсивного научного изучения. Установлено, что в зависимости от создаваемых параметров электромагнитного поля можно улучшать регенерацию костной ткани или тормозить этот процесс.

С.С. Ткаченко

Препараты и материалы для репаративной регенерации костной ткани

Препараты и материалы для репаративной регенерации костной ткани

Препараты и материалы для репаративной регенерации костной ткани

Человеческая кость — сложный орган со сложным иерархическим строением, выполняющий ряд механических и биологических функций. Костная ткань принимает участие в обменных процессах благодаря содержанию минеральных веществ. Она создает специфическое микроокружение для предшественников крови красного костного мозга.

Репаративная регенерация костной ткани, или репаративный остеогенез — это процесс восстановления кости после повреждения, который в той или иной мере является усиленным физиологическим процессом. Репаративный остеогенез представляет собой важную теоретическую и практическую проблему стоматологии и хирургии.

В идеале консолидация перелома должна привести к образованию новой костной ткани, идентичной ее состоянию до момента перелома. Однако на практике сращение перелома — достаточно длительный многостадийный процесс, которой происходит под влиянием многочисленных внутренних и внешних факторов.

Согласно данным отечественных исследователей, костная ткань имеет значительный репаративный потенциал. Но восстановительные процессы сложно контролировать извне.

Нормально протекающие и патологически замедленные процессы репаративного остеогенеза можно ускорить за счет активации метаболизма лишь в небольшой степени. С другой стороны, процесс легко замедлить при недостаточном понимании физиологии кости и нарушении условий, способствующих регенерации.

Методы стимуляции репаративной регенерации костной ткани

Разработка методов регулирующего воздействия на репаративный остеогенез является актуальной задачей современной стоматологии, хирургии, травматологии и ортопедии.

Активное применение современных фиксатором далеко не всегда обеспечивает полноценное сращение костных отломков. Зачастую специалисты не уделяют должного внимания динамике процесса, влиянию новых важных факторов и рациональным тактическим решениям в ходе лечения.

Опыт применения малоинвазивных методик остеосинтеза при переломах длинных трубчатых костей, которые предпочитают менее чем в 20% случаев, указывает на то, что разработкой и совершенствованием фиксаторов решить проблему костной регенерации точно не удается.

На основе системного подхода к решению этой проблемы можно эффективно разработать профилактические мероприятия и прогнозировать последствия заживления перелома. При этом вопросы поиска способов стимулирующего действия на область перелома с целью сокращения сроков сращения не являются новыми.

Поиск и обеспечение оптимальных условий протекания репаративно-регенераторных процессов при нарушении целостности костной ткани признано как перспективное и приоритетное направление научных исследований в XXI столетии.

На данный момент разработано большое количество методов оптимизации репаративного остеогенеза. В частности, был предложен метод направленного механического локального воздействия на зону костного дистракционного регенерата.

Известны отечественные и зарубежные экспериментальные исследования, в ходе которых оценивалась эффективность механических и гидродинамических влияний на формирование костной ткани в участке перелома при стимуляции заживления костной раны.

Рядом авторов было отмечено положительное рефлексотерапевтическое влияние на динамику репаративного процесса костной ткани при чрескостном дистракционном остеосинтезе.

В течение последних десятилетий интенсивно изучалась возможность использования физических методов воздействия с целью стимуляции остеогенеза. Эти методы не являются специфичными, но отличаются доступностью, и минимальной инвазивностью. Как правило, они не требуют специальных навыков персонала, дорогостоящего оборудования, характеризуются хорошими клиническими результатами и несравненно меньшим количеством осложнений по сравнению с традиционными методами.

Применение физических факторов обеспечивает стимулирующее влияние и оптимизацию репаративной регенерации костной ткани. Отечественными авторами часто отмечается положительное влияние переменного электромагнитного поля высокой частоты на процесс регенерации костной ткани и лечения инфекционных осложнений.

Для стимуляции регенерации костной ткани широко используется лазер. В ряде исследований отмечен положительный эффект применения механо-акустических волн. Ультразвуковые волны также отличаются выраженным стимулирующим действием на регенеративные процессы внутри костной ткани.

Неудовлетворительные с точки зрения хирургов результаты лечения, чрезмерная сложность и травматичность оперативных вмешательств побуждают исследователей к поиску новых, более совершенных способов и средств воздействия на репарацию костной ткани.

Современная остеотропная терапия

Многочисленные работы в России и за рубежом посвящены проблемам остеотропной терапии и целесообразности ее включения в лечение пациентов с переломами костей и нарушением консолидации костных отломков.

Эти научные сведения, при всей актуальности, достаточно разрозненные, а каждое из них содержит ограниченное количество наблюдений и рассматривает лишь отдельные аспекты проблемы заживления переломов.

Тем не менее доказано, что фармакологические препараты могут положительно влиять на различные стадии репаративного остеогенеза. Но связь между различными схемами использования препаратов и сращиванием костных отломков, их влияние на формирование регенерата на разных стадиях процесса продолжают вызывать дискуссии.

Далее упоминаются препараты для репаративной регенерации костной ткани:

  • Остеогенон

  • Цикло-3-форт

  • Бифосфонаты

  • Тивортин

  • Мексидол

  • Биофен

  • НПВП и др.

Международное сообщество по изучению регенерации после перелома (International Society for Fracture Repair) провело мультидисциплинарную рабочее совещание для разработки рекомендаций для клинической практики на основе оценки научных данных, по применению остеотропной терапии при переломах, в том числе на фоне лечения остеопороза.

Единогласно было признано, что надежной доказательной базы не существует, поэтому эксперты призвали продолжать исследования в этом направлении и их систематизацию.

В источниках литературы встречаются единичные исследования, в которых проведен анализ частоты нарушений консолидации костных отломков у пациентов разных возрастов, которые получали остеотропную терапию или плацебо.

В результате авторами сделаны выводы о положительном влиянии остеотропной терапии на исследуемые процессы. Однако для подтверждения этого с позиции доказательной медицины необходимо проведение двойных слепых плацебо-контролируемых исследований.

Особое значение уделяется препаратам, которые влияют на массу и качество кортикальной кости, играющей ведущую роль не только в обеспечении способности кости противостоять механическим воздействиям, но и в достижении стабильного остеосинтеза.

Одним из таких перспективных препаратов является остеогенон, который, по данным гистоморфометрического анализа, существенно тормозит потерю кортикальной кости.

Данные экспериментальных исследований продемонстрировали морфологические особенности регенерата в области костного дефекта при введении остеогенона животным на разных стадиях процесса. Эксперименты показали, что прием остеогенон минимизирует деструктивно-дистрофические изменения в новообразованной костной мозоли и увеличивает образование кости вокруг имплантатов, вживленных в бедренную кость.

Также остеогенон стимулирует активность остеобластов, способствует своевременному формированию органического матрикса регенерата, предотвращает выведение кальция и способствует его сохранению в костной ткани.

Интересна работа, посвященная изучению влияния остеогенона на плотность регенерата костной ткани с помощью спиральной компьютерной томографии при лечении больных с переломами длинных костей и их последствиями.

Использование метода СКТ позволило количественно и качественно оценить ход образование регенерата в зоне повреждения и изучить динамику его развития.

Дальнейшие клинические исследования продемонстрировали многообещающие результаты применения остеогенона в лечении несращения костей при переломах. Приведенные данные свидетельствуют об эффективности применения и переносимости при лечении травматических переломов у лиц молодого возраста.

Доказано, что препарат может применяться для ускорения консолидации костных отломков при травматических переломах. Применение остеогенона с кальцием и витамином D3 после чрескостного остеосинтеза у пациентов с несращениями костных отломков свидетельствовало о положительном влиянии этой терапии.

Клинический эффект остеогенона обусловлен ускорением костного ремоделирования за счет активации костной резорбции и остеогенеза с преобладанием последнего; ростом потенциала биоэнергетических реакций, преобладанием локальной регуляции.

Клинически отмечено сокращение сроков лечения и положительная динамика минеральной плотности костной ткани, что обусловлено оптимизацией костного ремоделирования.

Украинские авторы изучали влияние комбинированной фармакотерапии, включающей остеогенон, поливитаминный препарат с гипогомоцистеинемическим эффектом декамевит и донатор оксида азота тивортин (аргинина гидрохлорид). Ю. Бессмертный и соавторы доказали его положительное влияние на остеорепаративный потенциал, существенное повышение эффективности лечения ложных суставов.

Положительное влияние остеотропной терапии остеогеноном на эффективность лечения расстройств репаративного остеогенеза отмечают и другие авторы.

В литературе встречаются отдельные свидетельства, что, хотя остеогенон ускоряет образование костной мозоли на 5-6 дней, процесс формирования мозоли протекает менее интенсивно по сравнению с другими стимуляторами (например, препарат цикло-3-форт).

Также препарат имеет ряд противопоказаний, которые существенно сужают рамки его применения в хирургии и травматологии.

На сегодня с целью активизации репаративного остеогенеза используют синтетические кальций-фосфатные биоматериалы в виде керамики или композитов.

Еще одним актуальным направлением является изучение регенерации кости в условиях терапии бисфосфонатами. Данные по различным бисфосфонатам неоднозначные.

Существует большая доказательная база, согласно которой бисфосфонаты снижают риск возникновения переломов. Однако в источниках литературы присутствуют противоречивые данные по поводу влияния различных препаратов класса бисфосфонатов на процесс регенерации и посттравматического ремоделирования кости.

Согласно данным доклинических исследований о влиянии бисфосфонатов на репаративный остеогенез, бисфосфонаты на ранних этапах регенерации способствуют формированию объемных регенератов, повышению механической прочности кости, однако в дальнейшем приводят к замедлению процесса ремоделирования регенерата.

Проведя эксперименты на животных моделях, некоторые исследователи заключили, что бисфосфонаты не нарушают консолидации костных отломков перелома, однако замедляют процессы эндохондрального окостенения.

Дальнейшие клинические исследования, оценивающие влияние бисфосфонатов на регенерацию кости, являются единичными, противоречивыми и неполными. Не все клинические исследования подтвердили данные, полученные при проведении экспериментальных разработок.

Специалисты отмечают, что негативное влияние на ремоделирование кости на поздних стадиях регенерации, указанное в большинстве доклинических исследований, не уменьшает ценности бифосфонатнои терапии, в результате которой повышаются прочностные характеристики кости и снижается риск повторных переломов.

Влияние кальцитонина на регенерацию костной ткани при переломах стал предметом дискуссии в отечественной и зарубежной литературе. Ряд исследователей не отметили значимого влияния кальцитонина на темпы образования костной мозоли. Другие, наоборот, отмечают положительный эффект препарата на регенерацию, а в некоторых исследованиях наблюдалось ухудшение качественно-прочностных характеристик регенерата.

Изучение влияния кальцитонина лосося на репаративную регенерацию костной ткани в эксперименте указывает на нецелесообразность применения препарата на стадиях репаративного остеогенеза, которые охватывают воспалительный процесс.

При этом имело место замедление перестройки отломков материнской кости и снижение репаративного потенциала. По мнению ряда авторов, более оптимистичный прогноз возможен после введения препарата на стадии пролиферации, дифференцировки клеток и начала формирования тканевых структур.

В последние годы появились работы, посвященные влиянию фармакологических агентов с антиоксидантным действием на оптимизацию репаративной регенерации костной ткани.

Эти препараты снижают потребность клеток в кислороде и увеличивают их жизнеспособность в условиях гипоксии, ингибируют процессы перекисного окисления липидов и протеолиз, стимулируют регенерацию, усиливают детоксикацию, улучшают микроциркуляцию и реологические свойства крови.

Одно экспериментально-морфологическое исследование продемонстрировало оптимизацию репаративного остеогенеза при использовании препаратов мексидол и биофен, подтверждая регенераторные свойства этих лекарственных препаратов.

Следует отметить, что углубленное исследование препаратов остеотропного действия играет важную роль в лечении пациентов с переломами для уменьшения риска развития нарушений, связанных с замедленной консолидацией и различными вариантами несращений.

Роль НПВП в остеотропной терапии

В настоящее время обсуждается вопрос влияния нестероидных противовоспалительных препаратов (НПВП) на регенерацию костной ткани.

Анализ исследований по изучению влияния нестероидных противовоспалительных препаратов на остео- и хондрогенез продемонстрировал, что НПВП по-разному влияют на дифференцировку фибробластов, остеобластов и других клеток-предшественников в культуре мезенхимальных клеток человека.

Неоднозначными остаются результаты экспериментальных исследований влияния НПВП на хондрогенез: одни авторы отрицают, а другие, наоборот, подтверждают наличие эффекта. По результатам исследований на лабораторных животных было выявлено стимулирующее действие ибупрофена (снижение сроков заживления костной раны).

В литературе имеется небольшое количество ретроспективных и еще меньше проспективных рандомизированных клинических исследований, которые посвящены консолидации переломов при приеме нестероидных противовоспалительных препаратов.

В двойном слепом рандомизированном исследовании продемонстрировано отсутствие воздействия пироксикама на заживление переломов. В другом подобном исследовании не выявлено отрицательного влияния ибупрофена на заживление перелома.

Однако Bhattacharyya и коллеги зафиксировали более высокий риск нарушений консолидации перелома у пациентов, принимающих НПВП.

Учитывая данные экспериментальных и клинических исследований, можно сделать вывод о необходимости проведения крупных рандомизированных исследований. Пока их результаты недоступны, целесообразно ограничить прием нестероидных противовоспалительных препаратов всех групп у пациентов с высоким риском несращения.

Выбор материалов для репаративной регенерации костной ткани

При несращении переломов, атрофических гиповаскулярних ложных суставах и значительных дефектах длинных костей часто нужна биологическая стимуляция костеобразования в виде костной пластики (остеопластики).

В последнее время для оптимизации репаративного процесса врачи уделяют большое внимание использованию биологических остеопластических материалов, обладающих остеоиндуктивными или остеокондуктивными свойствами.

Наибольший объем исследований посвящен аутокости и аллокости, а также керамическому гидроксиапатиту и другим остеопластическим материалам. Однако проблема профилактики и лечения расстройств репаративного остеогенеза все еще актуальна.

В связи с этим принципиально важна разработка технологий оптимизации репаративного остеогенеза с использованием остеопластических материалов, обеспечивающих:

  • Отсутствие токсичности

  • Бактериальную и вирусную безопасность

  • Полную биодеградацию

  • Биологическую совместимость

  • Сочетание остеоиндукции и остеокондукции.

К таким биологическим материалам относят аутологичный обогащенный тромбоцитами фибриновый гель, который представляет собой продукт из собственной крови больного.

Согласно современным данным, тромбоцитарно-фибриновий гель содержит большое количество факторов роста, оказывает стимулирующее и остеокондуктивное действие, способен влиять на остеогенез за счет наличия вышеуказанных факторов роста и разветвленной сети фибриновых волокон.

Экспериментально доказана эффективность одновременного применения аутокрови и различных биологических имплантатов в качестве оптимизирующих факторов репаративного остегенеза. Одновременное применение аутокрови и указанных компонентов стимулирует метаболические процессы остеобластических клеточных элементов регенерата.

Для замещения, восстановления структурной целостности и повышения остеогенного потенциала костной ткани в клинической практике используют костные трансплантаты.

Аутотрансплантат как золотой стандарт остеопластики

«Золотым стандартом» для замещения костных дефектов считается аутотрансплантат из губчатой кости. С биологической и клинической точки зрения материал идеально подходит для костной пластики.

Аутогенная губчатая кость из-за отсутствия иммуногенности имеет остеогенные и остеоиндуктивные свойства, а также идеальную структуру для остеокондукции. Он является идеальным остеопластическим материалом среди всех биологических позиций, хотя использование ограничено в объеме из-за сложности забора и механической прочности.

Возможности получения аутотрансплантата в достаточном количестве для замещения крупных костных дефектов действительно ограничены потребностью в дополнительном хирургическом вмешательстве и повышенным риском для пациента.

Забор аутотрансплантата связан с серьезными осложнениями, а недостатком способа является нанесение дополнительной операционной травмы, увеличение кровопотери и времени самого оперативного вмешательства, анестезии.

Другие материалы для репаративной регенерации костной ткани

В специализированной литературе хорошо описаны преимущества, недостатки и риски, связанные с использованным аллоимплантатов. По этой причине продолжается активный поиск заменителей, которые способны составить конкуренцию аутокости.

В источниках дана подробная характеристика идеального имплантата, приведены классификации материалов в зависимости от происхождения, состава, технологии получения и поведения в организме, а также механизмы воздействия этих материалов на процессы регенерации костной ткани.

За последние годы в мировой прессе накопилось значительное количество публикаций, посвященных изучению природы индукционного остеогенеза, возникающего в ответ на применение деминерализованных костных трансплантатов.

Установлено, что они сочетают остеоиндуктивные и остеокондуктивные свойства. Эти свойства обеспечиваются путем высвобождения из экстрацеллюлярного матрикса ряда субстанций, способствующих регенерации воспринимающего костного ложа.

Лишенные минеральной основы деминерализованной трансплантаты быстрее васкуляризируются в организме реципиента и замещаются новообразованной костной тканью. При комбинированной пересадке деминерализованная кость существенно увеличивает скорость перестройки других биологических трансплантатов.

Считается доказанным, что остеоиндуктивные свойства деминерализованных костных трансплантатов определяются не какой-либо химической субстанцией, а целым комплексом индуцирующих костных морфогенетических белков, остеогенная активность которых возрастает по мере удаления минеральных элементов.

Существуют единичные работы, в которых приведены данные морфологического анализа репаративного остеогенеза и хондрогенеза при имплантации в зону повреждения суставного хряща и дефекта кости гранулированного минерализированного костного матрикса.

Особое место среди искусственных имплантатов занимают кальций-фосфатные остеопластические материалы. Многочисленные исследования показали, что кальций-фосфатные материалы по сравнению с другими биоматериалами обладают уникальными свойствами, способствующими их применению в замещении костных дефектов.

Эти материалы по составу близки к костной ткани человека и индуцируют аналогичные биологические реакции при ремоделировании кости. Согласно данным литературы, кальцийсодержащие имплантаты из мраморной муки также могут быть биосовместимыми, подвергаются биорезорбции, имеют остеоиндуктивные свойства.

Выбор методов лечения при нарушении остеорепарации

Современные рекомендации относительно выбора метода лечения при нарушениях процессов остеорепарации достаточно противоречивы.

Неудовлетворительные результаты лечения встречаются при использовании различных методов. По мнению В. Климовицкого и соавторов, выбор тактики лечения при костной дисрегенации должен начинаться с поиска и устранения факторов, которые вредят естественному протеканию репаративного остеогенеза.

Для достижения сращения в участке псевдоартроза длинных костей ряд авторов называют ведущим методом компрессионный остеосинтез аппаратом внешней фиксации. При этом, согласно Ю. Барабаш, оголение кости и остеопластика необязательны.

Если оперативный остеосинтез при ложном суставе выполняется погружным фиксатором, авторы рекомендуют обрабатывать костные концы в месте перелома, плотное соединять отломки в правильном положении, проводить биологическую стимуляцию регенерации с помощью остеопластики синтетическими материалами или остеоперфорацией.

В хирургии и травматологии разработан ряд эффективных методов чрескостного и внутрикостного остеосинтеза, способных оптимизировать репаративные свойства кости.

Однако реальные сроки сращений костной ткани остаются значительными.

Появление новых технологий, основанных на применении биоактивных интрамедуллярных имплантатов, призвана не только гарантировать положительный результат лечения переломов длинных костей, но и сократить сроки остеосинтеза, снизить количество осложнений.

В настоящее время отсутствует единое мнение относительно тактики оперативного лечения, времени, объема и способа фиксации костных отломков, показаний к изменению фиксаторов.

Отечественный исследователь К.М. Климов еще несколько десятилетий назад сформулировал основные принципы оперативного лечения несрастающихся переломов и ложных суставов длинных костей, в которых назвал показания к оперативному лечению:

  • Замедленное образования костной мозоли — оперативное лечение не показано.

  • Несрастающийся перелом без тенденции к сращиванию или ложного сустава — лечение методом остеопластики считается нерациональным. Щадящая операция.

  • Несрастающийся перелом с тенденцией к образованию ложного сустава — стабильный остеосинтез по типу внутреннего протеза.

При выполнении оперативного вмешательства рубцовую ткань, которая окружает костные отломки, Климов предлагал не удалять, а экономная резекция волокнистой и хрящевидной ткани рекомендовалась лишь для сопоставления костных фрагментов.

На основе предыдущих морфологических исследований исследователь утверждает, что склерозированные концы костных отломков способны к остеорепарации. Хотя среди врачей есть устойчивое мнение, что потенциальные репаративные возможности склерозированных тканей сведены на нет, а последняя подлежит обязательному удалению.

Дискуссионным является и первый постулат, поскольку есть сторонники оперативного лечения, даже ревизионного остеосинтеза при замедленной консолидации отломков.

А. Калашников и соавторы акцентируют внимание на объективизированной оценке процессов заживления переломов. Она позволяет отказаться от чрезмерного расширения показаний к оперативному лечению больных с замедленным сращением костных отломков и необходимости остеосинтеза в пограничных случаях, когда все возможности консервативного лечения не были исчерпаны.

Общим правилам проведения оперативных вмешательств при различных видах дисрегенераций являются:

  • Максимальное сохранение кровоснабжения отломков

  • Обеспечение максимально возможной плоскости контакта

  • Удаление нежизнеспособной костной ткани

  • Адекватная фиксация отломков.

На постсоветском пространстве профессором В. Климовицким и соавторами были предложены следующие подходы к лечению дисрегенераций.

При лечении гипертрофических ложных суставов однокостных сегментов выполняют осевую компрессию между отломками. Во время процедуры происходит разрушение и резорбция костной и рубцовой ткани, восстанавливаются воспалительные процессы в межотломковой зоне и процессы остеорепарации.

На двукостном сегменте (голень) предварительно необходимо обязательно выполнить остеотомию малоберцовой кости, которая выполняет роль распорки. Авторы считают, что во время оперативного лечения гипертрофических ложных суставов в большинстве случаев нет необходимости вмешиваться в область повреждения.

Исключения составляют случаи удаления металлического фиксатора.

Лечение олиготрофического вида дисрегенерации требует вмешательства на очагах повреждения с целью активации пониженного остеогенного потенциала путем различных хирургических приемов (туннелизация по Беку или костно-надкостничная декортикация).

Лечение гипотрофических форм расстройств репаративного остеогенеза считается самым проблематичным, поскольку остеорепаративный потенциал в данном случае отсутствует.

Оперативное лечение обязательно должно включать вмешательства в области ложного сустава. В ходе процедуры выполняется резекция измененных концов с последующим перекрытием зоны несращения кортикально-губчатым трансплантатом.

Выбор того или иного способа замещения костного дефекта должен осуществляться индивидуально, в том числе с учетом возможностей хирурга.

Для оптимизации условий формирования регенерата, сокращения длительности лечения и профилактики осложнений применяют метод направленной стимуляции регенерации костной ткани путем введения интрамедулярных спиц с кальций-фосфатным покрытием.

В литературе описаны морфологические особенности остеогенеза при консолидации костных отломков длинных костей в условиях интрамедуллярного введения фиксаторов с биоактивным кальций-фосфатным покрытием из гидроксиапатита.

Результаты многочисленных работ свидетельствуют, что интрамедуллярные фиксаторы с покрытием из гидроксиапатита положительно влияют на интенсивность репаративного остеогенеза при заживлении переломов.

Один из способов стимуляции остеорепарации заключается в стимуляции локальных источников остеогенеза путем создания сквозных каналов в метафизах и диафизах длинных костей (туннелизация) или дырчатого дефекта (остеоперфорация), обеспечивающих стимуляцию внутрикостного кровообращения.

Работы по изучению морфологических особенностей репаративного остеогенеза при заживлении переломов большеберцовой кости в условиях чрескостного остеосинтеза и нарушения локального источника остеогенеза в контралатеральной конечности продемонстрировали многообещающие результаты.

Было доказано, что остеоперфорация активизирует репаративный остеогенез, ускоряет компактизацию и развитие костной ткани, повышает степень ее зрелости и обеспечивает формирование полноценного костного регенерата на ранних сроках.

Приведенные данные указывают на нерешенность проблемы стимуляции репаративного остеогенеза, поскольку каждый из методов, наряду с положительными свойствами, имеет существенные недостатки и ограничения в клинической практике.

Предстоит поиск новых факторов, препаратов и материалов для репаративной регенерации костной ткани в стоматологии, хирургии, травматологии и других областях медицины.

Суть и цель методики направленной костной регенерации

1700


Дефекты зубного ряда доставляют огромный дискомфорт и проблемы. Если своевременно не принять соответствующие меры, то последствия могут быть еще хуже.

При длительном отсутствии механического давления на костные ткани, челюсти деградируют, и проведение имплантации не представляется возможным.

Одним из решений является наращивание недостающей костной ткани в области проведения протезирования.

Общее представление

Направленная тканевая регенерация – метод, позволяющий восстановить твердые ткани челюсти. Разрабатывался как хирургическое направление в стоматологии, является одним из этапов при имплантации.

Основой этого способа стала возможность задать необходимые параметры путем установления барьерных мембран, которые отделяют кость от мягких тканей.

Это позволяет устранить вероятность врастания клеток мягких тканей между частицами восстанавливающего вещества, что позволяет осуществить процедуру наиболее эффективным образом.

Первые успешные шаги в данном направлении были осуществлены в 1983 году исследовательской командой Ньюмана. Далее развитие исследований продолжалось и в 1988 году опыты на животных с использованием нерезорбируемых материалов принесли успех. Был разработан метод, позволяющий восстанавливать кости челюсти при имплантации.

Использование подобных материалов нашло широкое применение в стоматологии и позволило повысить эффективность не только имплантационной хирургии, но и других направлений.

Например, подготовка к стоматологическим манипуляциям, требующая наращивания кости. В дальнейшем метод получил название направленная костная регенерация.

Материалом для восстановления служат два вида мембранных элементов резорбируемого и нерезорбируемого типа. Они отличаются друг от друга тем, что первые рассасываются в период до полугода, а вторые необходимо извлекать.

Применяемые материалы

На челюстные кости постоянно осуществляется давление за счет выполнения жевательных функций. В связи с этим кость имеет большую плотность там, куда осуществляется большее давление.

При нарушении, нагрузка ослабевает, в том числе за счет перераспределения давления после потери зуба. Это приводит к тому, что костные ткани на этом участке истончаются и становятся более хрупкими.

Именно в таких случаях требуется проведение восстановительных процедур с использованием остеоиндуктивных веществ. Они призваны заместить деградировавшие участки, и способствую росту ткани.

Чаще всего в состав таких препаратов входят костные белковые молекулы, имеющие похожее строение. Они запускают механизм регенерации.

Чтобы наладить кровоснабжение восстанавливаемых участков, применяют мембранные элементы. Чаще всего это – мембраны из коллагена двух слоев, обработанных регенерирующими составами.

Это позволяет наиболее эффективно запустить рост и развитие поврежденных участков костей челюсти. Часто гранулы костного вещества совмещают с гидроксиапатитными соединениями и мембранными барьерами.

Помимо этого, используются методики направленной регенерации костей челюсти с использованием биологически активных соединений и различных дистрактирующих препаратов. В любом случае, врач осуществляет выбор метода лечения, исходя из особенностей строения челюсти и характера повреждения.

Чтобы получить наилучший результат при процедуре используют комбинирование различных материалов: костная ткань, кровяные клетки и т.д.

Такие смеси ускоряют приживаемость, активируют регенерацию. Кровяные клетки, добавленные в измельченные костные гранулы, позволяют достичь наибольшего успеха, что способствует распространению данного метода.

Использование резорбируемых мембран

Главным преимуществом мембранных элементов резорбируемого типа является то, что они самостоятельно рассасываются с течением времени, их не нужно извлекать путем дополнительного вмешательства. Это дает возможность ускорить регенерирующие процессы.

Подобные элементы легко использовать, они не требуют специальных условий. Во влажном состоянии они легко пристают к нужному участку и фиксируются.

Главным минусом использования является то, что такие конструкции не позволяют восстанавливать обширные участки поврежденных тканей, а лишь зоны до двух миллиметров. Это уменьшает сферу их применения.

В связи с этим формируется меньший размер костной ткани и осложняется возможность формирования правильных форм конкретных участков.

Основными направлениями применения подобных материалов становится ограждение участка, где проводится операция, а также формирование биобарьера в зоне надреза.

По горизонтали проводить регенерацию с помощью материалов резорбируемого типа довольно сложно. Это связано с описанным выше недостатком, который не позволяет сохранять большой объем. Допустимый предел использования не больше полутора-двух миллиметров. На верхней челюсти использование таких мембран более предпочтительно.

По вертикали данные элементы применимы только тогда, когда имеют место щелевые отверстия в местах имплантации шириной до трех миллиметров. Но при этом не будет образована полноценная кость, так как будут присутствовать участки других тканей.

Основным преимуществом рассасываемой мембраны перед остальными типами является ускоренное заживление мягких тканей.

При этом большим недостатком является возможность деградации и разрушения восстановленных участков костной ткани.

Преимущества нерезорбируемых пластин

Мембранные элементы нерезорбируемого типа — наиболее эффективное средство при регенерации костных тканей.

Главным преимуществом является то, что использование таких материалов дает возможность сформировать кость с нужными параметрами и характеристиками.

По своей конструкции они делятся на бескаркасные и каркасные с титановыми элементами. Каркас способствует формирование четких границ, препятствующих дальнейшему разрушению конструкции.

Такие элементы применяются, когда необходимо восстановить обширные участки как на вертикальных, так и горизонтальных плоскостях.

По горизонтали такие мембраны позволяют очень легко восстанавливать поврежденные структуры. При этом можно использовать различные вещества, замещающие костную ткань.

Если восстановить нужно участки объемом более четырех миллиметров, то обязательно применяется каркас, который позволит защитить восстанавливаемую область.

Процесс фиксации

Рассмотрим основные этапы по установке нерассасываемой мембраны. Чаще всего, происходит следующие манипуляции.

Отслоение надкостничного лоскута

Врач должен понимать, что осуществляемое надрезание тканей должно проводиться таким образом, чтобы фиксируемая мембрана не касалась корневой части зуба.

Иначе это может привести к тому, что мягкие ткани будут плохо восстанавливаться, что будет способствовать попаданию болезнетворных бактерий и развитию воспалительных процессов.

Правильно установленная мембрана обеспечит быстрое заживление и достаточный объем восстановленной костной ткани. При этом наиболее правильно фиксировать мембрану на удалении четырех миллиметров от корня.

Это означает, что запущенные случаи деградации и разрушения костной ткани невозможно устранить при помощи направленной регенерации тканей.

При формировании лоскутных участков необходимо учитывать специфику мягких тканей пациента, а также параметры восстановления костных тканей. Это позволит наилучшим образом подобрать размер мембраны, а также повысить эффективность терапии.

В целом от того, как выполнен надрез и сформирован лоскут зависит успешность проводимой манипуляции.

Декортикация поверхности ложа

Декортикационные мероприятия на участках, куда будет фиксироваться элемент производятся фиссурами или шарообразными борами небольших габаритов. Также могут применяться тоненькие сверла.

При проведении процедуры специалист должен чувствовать этапы прохождения инструмента через костную ткань. В некоторых случаях приходится сохранять отдельные участки и слои в зависимости от условий операции.

Мероприятия проводятся с целью обеспечить свободное движение и доступ восстанавливающих препаратов в пораженную область. Также без этого невозможно обеспечить нормальный кровоток.

Фиксация мембраны

Конструкция фиксируется с малозаметной стороны винтами из титана. После того как закреплена одна сторона, происходит введение регенерирующих препаратов. Затем фиксируется вторая сторона.

При фиксации важно обеспечить максимально плотное прилегание. Если это не обеспечить, то в складках начнет прорастать мягкая ткань, что снизит успех процедуры.

Ушивание мягких тканей

При ушивании лоскутов над мембранными элементами важно наиболее точно сопоставить границы надрезов. При этом при накладывании швов нужно использовать нити наименьшей толщины.

Именно такой подход позволит уберечь прооперированные участки от попадания бактерий и развития воспаления.

Асептика

Проведение обеззараживающих мероприятий особенно важно при подобных операциях, так как помимо внешней раны внутрь устанавливается инородной тело. Поэтому важно обеспечить защиту от вредоносных бактерий.

 

Постоперационные рекомендации

После проведения операции врач назначает прием антибиотиков, антивоспалительных препаратов и антигистамины.

Также важно следить за гигиеной полости рта и регулярно полоскать антибактериальными растворами.

В видео смотрите, как проводится направленная костная регенерация.

Выводы

Таким образом, можно отметить, что применение нерезорбируемых мембран позволяет достичь больших результатов в области восстановления костной ткани челюсти.

Даже при больших поражениях за счет использования титанового каркаса можно восстановить обширные участки тканей.

Проведенные процедуры дают возможность имплантации в укрепленную кость зубных дентальных конструкций.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Понравилась статья? Следите за обновлениями

         

похожие статьи

Репаративная регенерация костной ткани и ее нарушения

Репаративная регенерация костной ткани и ее нарушения

Репаративная регенерация костной ткани и ее нарушения

В настоящее время травматизм входит в пятерку ведущих смертности в мире, угрожая экономическому и социальному развитию. Переломы длинных костей занимают ведущее место в структуре травматизма последних десятилетий и составляют, по данным различных авторов, составляют до 80% всех повреждений костей скелета.

Поэтому проблема лечения переломов костей последние годы сохраняет актуальность, хотя прогресс в области травматологии является несомненным. Остается нерешенным ряд вопросов, связанных с так называемой остеогенной недостаточностью.

Несмотря на применение современных медицинских технологий, процент осложнений, возникающих в результате лечения переломов длинных костей, остается высоким.

К ним относятся замедленная консолидация, формирование ложных суставов, несращение костных отломков и другие проблемы.

Так, нарушение консолидации костных отломков при переломах длинных костей составляет от 15 до 50%, а частота ложных суставов варьирует от 4 до 33%.

Согласно данным Американской ассоциации ортопедии, из двух миллионов переломов длинных костей в США ежегодно около 100 тысяч завершаются несращением.

По информации отечественных исследователей, нарушения консолидации костных отломков при переломах костей конечностей составляют около 25% в структуре инвалидности пострадавших от механической травмы.

Процент неудач в процессе лечении подобных нарушений классическими методами достигает 33%, что почти в два раза превышает число неудовлетворительных анатомо-функциональных результатов лечения переломов.

За последние годы отмечается и скрытый рост инвалидности вследствие травм и увеличения срока консолидации в каждом третьем случае.

Проблема лечения нарушений репаративной регенерации костной ткани, возникающих после диафизарных переломов костей, остается актуальной для современной ортопедии и травматологии. Случаи развития такой патологии составляют от 2,5 до 18%.

В структуре последствий травм длинных костей псевдоартрозы бедренной кости составляют 10-30%, костей голени - 15-50%, плечевой кости - 1-10%.

Обращает на себя внимание, что среди контингента с нарушениями репаративной регенерации костей преобладают лица трудоспособного возраста.

Данная патология отмечается стойкой утратой трудоспособности у 5 человек на 10000 населения, а образованные при этом анатомо-функциональные нарушения конечности являются причиной стойкой инвалидности в 12-45% больных.

Длительное лечение больных с большими материальными затратами, низкая эффективность, высокий уровень инвалидности позволяют считать осложнения при переломах длинных костей важнейшей социальной проблемой, с которой многим пострадавшим сложно справиться без социальной помощи.

Из этого следует, что лечение переломов длинных костей, осложненных репаративными нарушениями, является актуальной экономической и медико-социальной проблемой.

Основная задача современной травматологии заключается в совершенствовании существующих и разработке новых, экономичных и эффективных методов лечения.

Что такое регенерация костной ткани?

Кость представляет собой сложный орган, который выполняет механические и биологические функции в организме и имеет сложную иерархическую структуру.

Кости участвуют в обменных процессах благодаря содержанию значительного процента минеральных веществ организма, а также создают специфическое микроокружение для предшественников крови красного костного мозга.

Костная ткань являет собой динамическую систему, в которой в течение жизни организма происходят два взаимосвязанных противоположных процесса, составляющих природный цикл ремоделирования – резорбция (разрушение) и остеогенез (синтез).

Поэтому условия репаративного остеогенеза постоянно находятся в поле зрения практикующих врачей – травматологов и ортопедов.

Давно известно, что переломы в области компактной (кортикальной) и губчатой ​​(трабекулярной) костной ткани отличаются сроками консолидации, что связано с особенностями ее структурной организации.

Перспектива заживления переломов губчатой кости более благоприятные, поскольку в структуре ее находятся элементы, необходимые для формирования регенерата. В свою очередь, компактная костная ткань характеризуется низкой плотностью сосудов по сравнению с губчатой, а также имеет особенности кровоснабжения.

Репаративная регенерация определяется как процесс восстановления ткани после травмы. Механизмы репаративной и физиологической регенерации одинаковые и основываются на единых биологических закономерностях.

Репаративная регенерация рассматривается как в той или иной степени усиленная физиологическая. Репаративная регенерации костной ткани – она же репаративный остеогенез – важная теоретическая и практическая проблема травматологии.

Действительно, в идеале консолидация перелома должна привести к образованию обновленной костной ткани, идентичной старой, существовавшей до травмы. Однако сращение перелома на практике является достаточно сложным, длительным многостадийным процессом, на который влияет множество факторов.

Кость имеет очень высокий репаративный потенциал.

Проблема состоит в том, что процессы репаративного остеогенеза возможно ускорить за счет активации обмена лишь в очень незначительной степени (порядка недель). С другой стороны, замедлить процесс нарушением физиологических условий очень легко, что нередко происходит из-за недостаточного понимания физиологии кости.

Согласно определению Руцкого и Ткаченко, репаративная регенерация – это сложный процесс, вызванный разрушением костных структур, который количественно превышает допустимые пределы физиологической регенерации и направлен на полное восстановление анатомической целостности и функции кости.

По мнению исследователя А. Корж, процессы регенерации кости являются сложным переплетением общих воздействий на системном уровне и локальных изменений тканевых обменных процессов, включая изменения на молекулярном уровне.

Д. Саркисов и соавторы представляют репаративный остеогенез как физиологическую регенерацию, которая протекает в условиях экстремальных воздействий на организм и отличается большей интенсивностью проявлений.

Другие же исследователи утверждают, что, в отличие от физиологической регенерации, которая фактически является адаптацией, репаративный остеогенез – компенсаторный процесс, восстанавливающий строение после гибели части или всего органа.

Репаративная регенерация каждого типа тканей имеет уникальные особенности, но всегда включает следующие процессы:

  • Разрушение поврежденных клеток и структур

  • Пролиферация жизнеспособных клеток в области дефекта

  • Дифференцировка жизнеспособных клеток регенерата

  • Формирование межклеточных связей и перестройка регенерата.

Репаративная регенерация костной ткани бывает неполной или полной.

Полная регенерация характеризуется замещением дефекта тканью, которая соответствует старой ткани. О неполной принято говорить в случаях, когда костный дефект замещается соединительной тканью или рубцом.

Репаративный остеогенез – это многокомпонентный процесс, основными этапами которого являются дифференцировка клеток, пролиферация, резорбция погибшей ткани и образование кости с ее ремоделированием, формирование органического внеклеточного матрикса и его минерализация.

Описанные процессы протекают параллельно, но один из них может стать доминирующим на тех или иных стадиях репаративного остеогенеза.

Практика подтверждает, что костная ткань действительно является уникальной, поскольку способна восстанавливать полностью даже большие по длине дефекты.

Причины нарушений репаративной регенерации кости

Известно, что репаративная регенерация костной ткани является сложным, генетически запрограммированным процессом. Стадийно-временные характеристики этого процесса зависят от действия ряда эндогенных и экзогенных факторов.

Течение остеорепаративного процесса связывают с такими факторами:

  • Особенности и интенсивность травмы

  • Характер повреждения кости и мягких тканей

  • Степень посттравматических расстройств периферического кровоснабжения

  • Качество оказания первичной и квалифицированной медицинской помощи

  • Особенности восстановительного лечения

  • Наличием сопутствующей патологии.

Одно из первых мест среди причин, способствующих развитию нарушения репаративного остеогенеза, занимает несвоевременность и неадекватность оказания квалифицированной медицинской помощи.

Экспериментально доказано, что в случаях отсроченной иммобилизации отломков при переломе костей предплечья уже на 3 сутки проявляются признаки нарушения процесса костной репарации с увеличением срока консолидации в 1,5 раза.

Отсроченное сопоставление отломков костей голени за 14 суток приводит к образованию ложного сустава, а при отсутствии стабильной фиксации отломков сроки формирования периостального костного сращения увеличиваются не менее чем в 4 раза.

Дальнейшие экспериментальные исследования показали, что нарушение условий репаративной регенерации в виде отсроченного до 14 суток сопоставления костных отломков приводят к формированию ложного сустава на 50-е сутки.

При медленном заживлении перелома восстановление кости в обычные сроки не происходит, тормозится ремоделирования и созревания костной мозоли.

Как правило, заживление в подобных ситуациях наступает через год и более.

Перелом расценивают как несросшийся, если по истечении 6 месяцев отсутствуют рентгенологические признаки заживления, или когда отсутствует положительная динамика в течение трех месяцев наблюдения.

При несращении перелома наблюдается торможение репаративных процессов и остановка его заживления. Понятие «замедленная консолидация» принято считать относительным, поскольку сроки сращения переломов у каждого больного индивидуальны и зависят от многих факторов.

Условно эти факторы можно разделить на общие и местные.

Общие факторы связаны с общим состоянием организма, сопутствующей соматической патологией, медикаментозной терапией, наличием вредных привычек и тому подобное.

К факторам второй группы относят отсутствие надежной иммобилизации сегмента, недостаточную репозицию, фиксацию и нарушение кровоснабжения костных отломков, травматичность оперативного вмешательства, нарушения тактики лечения, использование массивных металлических имплантатов.

Важным звеном репаративной регенерации является состояние костной ткани на момент травмы, а также эндемическое состояние региона, где проживает травмированное лицо.

В последнее время увеличивается количество исследований относительно влияния неблагоприятных экологических факторов на репаративный остеогенез костной ткани. Отечественными и зарубежными авторами изучалось влияние экологического окружения человека на структуру и метаболизм костной ткани, от которых зависит ход репаративной регенерации.

Клинические исследования демонстрируют, что повышенное потребление фтора сопровождается ломкостью костей, при этом замедляется процесс репаративного остеогенеза и чаще формируются ложные суставы.

После проведения нескольких экспериментов in vitro ученые пришли к выводу о разрушительном действии радиации на костную ткань, которая также замедляет процессы регенерации и увеличивает количество осложнений.

Поэтому при лечении переломов костей необходимо учитывать воздействие неблагоприятных факторов окружающей среды на регенерацию костной ткани.

В настоящее время темой научных дискуссий является вопрос зависимости частоты нарушений остеорепаративных процессов от механизма травмы. Согласно клиническим исследованиям, этиологический фактор травмы влияет на процессы заживления раны.

На течение репаративного процесса влияет как разновидность травмирующего агента, так и характер повреждения костной ткани. По данным ряда авторов, у 55% ​​пациентов с нарушением репаративного остеогенеза травма получена в результате действия высокоэнергетического травмирующего агента.

Проведенные экспериментальные исследования выявили, что при воздействии травмирующей силы высокой интенсивности происходит гибель значительного числа клеточных источников остеорепарации, а сохранившиеся клетки претерпевают настолько значительные морфологических изменения, что не в состоянии поддерживать нормальное функционирование ткани.

Е. Побел и соавторы приводят целый ряд причин, которые приводят к нарушению процессов посттравматической остеорегенерации:

  • Возраст пациента

  • Характер травматического повреждения

  • Патологическое состояние костной ткани (остеопороз)

  • Отягощенный анамнез (хронические болезни печени и почек, ожирение)

  • Снижение остеорепаративного потенциала (дефицит факторов роста, остеокальцитонина, активной формы гормона витамина D3)

  • Травматичность процедуры металлоостеосинтеза.

Эти изменения приводят к нарушению процессов консолидации костных отломков и требуют проведения мероприятий по оптимизации репаративного остеогенеза.

Кость является высокоспециализированной тканью, которая существует в тесном взаимодействии связи с кровеносной системой. Взаимосвязь путей гемоциркуляции в костной ткани проявляется как в местных нутритивных процессах, поддержке общего минерального равновесия внутренней среды организма, так и непосредственно в физиологической и репаративной регенерации костной ткани.

Поэтому весомым фактором, обусловливающим расстройства репаративного остеогенеза, является нарушение кровообращения в участке повреждения.

Недостаточная степень кровоснабжения зоны перелома вследствие массивного повреждения мягких тканей, кости, отслоение и травматизация надкостницы, нарушение медуллярного кровообращения приводят к активизации хондрогенеза и неполноценности процесса срастания костных отломков.

Проведенные исследования выявили особенности структурно-функционального состояния сосудов при нарушениях репаративного остеогенеза. Эти расстройства могут быть обусловлены структурно-функциональнимы изменениями сосудов поврежденной конечности, которые определяют особенности его течения.

Большой интерес вызывает концептуальная модель механизма компенсации нарушений регионарного кровоснабжения при переломах костей, которую разработали исследователь Г.В. Гайко и его коллеги.

Проводя экспериментальные и клинические исследования периферического кровоснабжения при переломах, авторы пришли к выводу, что в основе восстановления регионарного кровоснабжения после перелома костей лежит перераспределение циркуляции крови и реваскуляризация тканей.

Компенсация регионарного и местного кровоснабжения, как правило, наступает в течение нескольких часов после травмы при переломах без смещения костных отломков, без обширного повреждения мягких тканей и магистральных сосудов.

Неполная компенсация сопровождается гипоксией, способствует развитию фиброзной соединительной ткани и стимулирует фиброзное сращение костных отломков.

На участке декомпенсации возникает некроз костной и мягких тканей, который и является причиной продления сроков лечения, формирования ложных суставов и возникновения гнойных осложнений.

Стадии репаративной регенерации костной ткани

Разработаны стадии репаративного остеогенеза в их взаимосвязи, при которых каждая стадия характеризуется определенным морфологическим клеточно-тканевой составом.

Изучение морфологических изменений при лечении перелома кости с использованием различных методических подходов позволило выделить в регенерации два этапа:

  • Построение соединительнотканной мозоли и замещение ее незрелой.

  • Перестройка в сформированную зрелой костью предшественницу костной мозоли.

Согласно результатом проведенных патоморфологических анализов заживления костных переломов выделяют следующие стадии восстановления дефекта кости:

  • I – дестабилизация клеточных элементов

  • II – интенсивная клеточная пролиферация

  • III – дифференциация различных тканей (хрящевой, фибробластической, остеобластической, недифференцированной ткани, похожей на мезенхиму, фибробластической соединительной ткани)

  • IV – эпигенез остеогенной ткани, при котором наблюдаются процессы прямой метаплазии, атипичной энхондральной оссификации и остеоидной модификации

  • V - спонгизация остеоидной ткани и образование остеонов

  • VI – образование пластинчатой ​​кости.

В другом варианте выделяются 4 стадии: пролиферацию остеобластных клеток, образование коллагеновых волокон, образование аморфного углеводно-белкового вещества и импрегнация межклеточного вещества минеральными солями.

Используя новые данные молекулярной биологии, биохимии, морфологии, иммуноморфологии и генетики Н. Корж и соавторы выделили 5 стадий репаративного процесса: воспаление, дифференцировку клеток и формирование тканеспецифических структур в области травмы, реорганизация тканевых структур и их минерализация, ремоделирование и завершения восстановительного процесса.

Такого же мнения придерживаются многие известные зарубежные авторы.

Вообще, восстановление кости – сложный биологический процесс, требующий изменений в экспрессии нескольких тысяч генов.

Чаще консолидация переломов происходит путем косвенного восстановления кости, состоит из нескольких последовательных этапов – воспаление, образование мягкой мозоли, образование твердой мозоли и ремоделирование.

Фаза воспаления начинается непосредственно после травмы и длится до 5 дней.

Эта стадия включает образование воспалительной гематомы вследствие разрыва кровеносных капилляров в зоне перелома, миграцию в зону воспаления мезенхимальных клеток, нейтрофилов и макрофагов для удаления фрагментов поврежденной ткани, которые дифференцируются в фибробласты, остеобласты иил хондробласты с последующим образованием хрящевого матрикса.

В течение второй стадии, которая продолжается до 40 дней, происходит замещение гематомы фиброзно-хрящевой тканью путем дифференцирования мезенхимальных клеток в хондроциты, а также синтеза матрикса из коллагена второго типа.

Далее матрикс постепенно кальцинируется и замещается костной тканью, синтезированной остеобластами.

В течение третьей стадии процесса происходит оссификация, образуются костные мостики между фрагментами переломанной кости.

Процесс репаративной регенерации заканчивается стадией ремоделирования, когда восстанавливаются ее исходная форма, структура и механическая прочность.

Нарушение течения любой из этих стадий могут привести к замедлению процесса остеорепарации в целом или даже несращению фрагментов кости.

Гистологически различают два варианта сращения костных отломков – первичное (прямое) и вторичное. Первичное заживление происходит благодаря активной пролиферации остеогенных клеток в фоне гиперваскуляризация тканей на участке перелома. Вторичное заживление протекает в несколько стадий.

На сегодняшний день было разработано несколько классификаций, подробно описывающих стадии заживления перелома.

Известны данные и о стадийности заживления переломов, которые основаны на конкретных морфологических преобразованиях в зоне дефекта кости:

  • Тромбирование гематомы

  • Организация кровяного сгустка

  • Образование фиброзного предкистозного регенерата

  • Формирование полноценного регенерата костной ткани

  • Образование вторичного регенерата кости

  • Функциональная реконструкция регенерата.

Ряд авторов по совокупности структурно-морфологических и биохимических изменений, происходящих в костном регенерате, выделяют следующие фазы регенерации кости:

  • I – катаболическая, с дезинтеграцией и деградацией окружающих структур

  • II – прогрессирующая пролиферация клеток и дифференцировка клеточных элементов с секрецией органической основы костного регенерата

  • III – сложные биохимические, биофизические и физиологические процессы, приводящие к появлению первичной костной структуры

  • IV - образование пластинчатой ​​костной структуры, обеспечивающей восстановление формы и функции кости.

При сопоставлении с приведенными выше исследованиями оригинально выглядит вариант классификации стадий заживления перелома кости (воспаление, фагоцитоз, фиброзная мозоль, первичная и вторичная костные мозоли), в котором авторы недостаточно обоснованно отделили фагоцитоз от воспаления.

На основании системных представлений и оценки результатов многочисленных клинических и экспериментальных наблюдений динамики сращения костных отломков А.Т. Бруско и соавторы предложили свою стадийность репаративного остеогенеза. Здесь он рассматривается как однонаправленный процесс, протекающий с закономерной последовательностью морфологических изменений регенерата.

Авторы выделили следующие стадии заживления переломов костей:

  • I – репаративная реакция

  • II – формирование сращения костных отломков

  • III – сращение отломков, при котором возможны варианты: а) первичное костное сращение, b) фиброзно-хрящевое сращение, c) вторичное костное сращение

  • IV – функциональная перестройка костной мозоли и консолидированных отломков с формированием органной структуры кости.

Как мы видим, проблема регенерации костной ткани занимает особое место в биологических и медицинских знаниях. На данный момент определены ключевые особенности регенерации костной ткани и достигнуты определенные успехи в выяснении биологических механизмов, лежащих в основе репаративного остеогенеза, сформулированы основные тенденции развития науки.

Репаративная регенерация костной ткани

Регенерация костной ткани может быть физиологической и репаративной. Физиологическая регенерация заключается в перестройке костной ткани, в процессе которой происходит частичное или полное рассасывание костных структур и создание новых. Репаративная (восстановительная) регенерация наблюдается при переломах костей. Этот вид регенерации является истинным, так как образуется нормальная костная ткань.

Восстановление целостности поврежденной кости происходит путем пролиферации клеток камбиального слоя надкостницы (периоста), эндоста, малодифференцированных плюрипотентных клеток стромы костного мозга, а также в результате метаплазии малодифференцированных мезенхимных клеток параоссальных тканей. Последний вид репаративной регенерации костной ткани наиболее активно проявляется за счет мезенхимных клеток адвентиции врастающих кровеносных сосудов. По современным представлениям, остеогенными клетками-предшественниками являются остеобласты, фибробласты, остеоциты, парациты, гистиоциты, лимфоидные, жировые и эндотелиальные клетки, клетки миелоидного и эритроцитарного ряда. В гистологии принято называть костеобразование, возникающее на месте волокнистой соединительной ткани, десмальным; на месте гиалинового хряща — энхондральным; в области скопления пролиферирующих клеток скелетогенной ткани — костеобразованием по мезенхимному типу.

Повреждение костной ткани сопровождается общими и местными изменениями после травмы; посредством нейрогуморальных механизмов в организме включаются адаптационные и компенсаторные системы, направленное на выравнивание гомеостаза и восстановление поврежденной костной ткани. Образующиеся в зоне перелома продукты распада белков и других составных частей клеток являются одним из пусковых механизмов репаративной регенерации. Среди продуктов распада клеток наибольшее значение имеют химические вещества, обеспечивающие биосинтез структурных и пластических белков. В последние годы доказано (А. А. Корж, А. М. Белоус, Е. Я. Панков), что такими индукторами являются вещества нуклеиновой природы (рибонуклеиновая кислота), которые влияют на дифференцировку и биосинтез белков в клетке.

В механизме репаративной регенерации костной ткани выделяют следующие стадии:
1) катаболизм тканевых структур, дедифференцирование и пролиферация клеточных элементов;
2) образование сосудов;
3) образование и дифференцирование тканевых структур;
4) минерализация и перестройка первичного регенерата, а также реституция кости.

В зависимости от точности сопоставления отломков костей, надежного и постоянного их обездвиживания, при сохранении источников регенерации и прочих равных условиях наблюдаются различия в васкуляризации костной ткани. Выделяют (Т. П. Виноградова, Г. Н. Лаврищева, В. И. Стенула, Э. Я. Дубров) 3 вида репаративной регенерации костной ткани: по типу первичного, первично-задержанного и вторичного сращения костных отломков. Сращение костей по первичному типу происходит при наличии небольшого диастаза (50— 100 мкм) и полном обездвиживании сопоставленных отломков костей. Сращение отломков наступает в ранние сроки путем непосредственного формирования костной ткани в интермедиарном пространстве.

В диафизарных отделах костей на раневой поверхности отломков образуется скелетогенная ткань, продуцирующая костные балки, что приводит к возникновению первичного костного сращения при малом объеме регенерата. При этом в регенерате на стыке костных концов не отмечается образования хрящевой и соединительной тканей. Такой вид сращения костей, с образованием минимальной периостальной мозоли, когда соединение отломков происходит непосредственно за счет костных балок, является наиболее совершенным. Этот вид сращения может наблюдаться при переломах без смещения отломков, под надкостничных переломах у детей, применении прочного внутреннего и чрескостного компрессионного остеосинтеза.

Первично-задержанный тип сращения имеет место при отсутствии щели между прочно фиксированными неподвижными костными отломками и характеризуется ранним, но лишь частичным сращением в области сосудистых каналов при внутриканальном остеогенезе. Полному интермедиарному сращению отломков предшествует резорбция их концов.

При вторичном типе сращения, когда вследствие неудовлетворительного сопоставления и фиксации отломков имеются подвижность между ними и травматизация новообразованного регенерата, костная мозоль формируется главным образом со стороны периоста, проходя десмальную и энхондралъную стадии. Периостальная костная мозоль обездвиживает отломки, и только затем происходит сращение непосредственно между ними.

Степень фиксации отломков костей определяется соотношением величины смещающих усилий и усилий, препятствующих этому смещению (В. И. Стецула). Если избранный метод фиксации отломков костей обеспечит полное сопоставление отломков, восстановление продольной оси кости, а также преобладание сил, препятствующих их смещению, фиксация будет надежной. Для сохранения в период формирования сращения постоянной неподвижности на стыке отломков необходимо применять средства фиксации, позволяющие создать значительное превышение величины устойчивости отломков над смещающими усилиями. Запас устойчивости отломков дает возможность рано приступить к активной функции и нагрузке на конечность. Сдавление отломков между собой (компрессия) непосредственно не стимулирует репаративную регенерацию, а усиливает степень обездвиживания, чем способствует более быстрому образованию костной мозоли. В зависимости от степени сдавления отломков, по данным В. И. Стецулы, репаративная регенерация костной ткани протекает различно. Слабая компрессия (45 — 90 Н/см2) не обеспечивает достаточной неподвижности отломков, сращение отломков и сроки его приближаются к вторичному типу. Создание значительной компрессии (250 — 450 Н/см2) приводит к уменьшению щели между отломками и резорбции их концов, к замедлению образования костной мозоли между ними. В этом случае регенерация протекает по типу первичнозадержанного сращения. Наиболее оптимальные условия для репаративной регенерации костной ткани создаются при компрессии средней величины (100 — 200 Н/см2).

Процесс восстановления костей после травмы определяется целым рядом факторов. У детей сращение костей происходит быстрее, чем у взрослых. Имеют значение анатомические условия (наличие надкостницы, характер кровоснабжения), а также тип перелома. Косые и винтообразные переломы срастаются быстрее, чем поперечные. Благоприятные условия для сращения костей создаются при вколоченных и поднадкостничных переломах.

Уровень репаративной регенерации костной ткани во многом определяется степенью травматизации тканей в области перелома: чем больше повреждены источники костеобразования, тем медленнее протекает процесс образования костной мозоли. Учитывая последнее обстоятельство, при лечении переломов следует отдать предпочтение методам, не связанным с нанесением дополнительной травмы в области перелома, а оперативные вмешательства не должны быть травматичными.

В формировании костной мозоли большое значение имеет и соблюдение механических факторов: точного сопоставления, создания контакта и надежного обездвиживания отломков. При остеосинтезе основным условием для сращения костей является неподвижность отломков.

При наружном чрескостном остеосинтезе за счет сдавления и фиксации на протяжении отломков костей спицами, закрепленными в аппарате, на стыке отломков создаются неподвижность и оптимальные условия для формирования первичного костного сращения. На стыке костных отломков формирование сращения начинается с образования эндостального костного сращения, периостальная реакция появляется значительно позже. Точная репозиция и стабильная фиксация отломков аппаратом создают условия к компенсации внутрикостного и местного кровотока, а ранняя нагрузка способствует нормализации трофики. При дистракции вначале возникают условия для формирования костного регенерата между медленно растягиваемыми отломками, а затем формируется костное сращение на стыке регенератов (В. И. Стецула). Установлено, что при дистракции возникает локальный остеопороз, при компрессии этого не наблюдается. Обездвиживание отломков достигается жесткостью аппарата, а также натяжением тканей, связывающих отломки, и мышечных футляров. В этих условиях запас устойчивости отломков возрастает до величин, необходимых для создания постоянной неподвижности и завершения «вторичной» оссификации регенерата.

При дистракции условия формирования между отломками вторичного костного сращения создаются в результате непосредственного обездвиживания костных отломков и «репаративного остеогенеза». В метаэпифизарных отделах костей, имеющих хорошее кровоснабжение, при прочном компрессионном остеосинтезе в короткие сроки происходит сращение по всей площади соприкосновения отломков. При диафизарных переломах репаративная реакция начинается в отдалении от места перелома, а на месте перелома появляется с восстановлением кровоснабжения. Вначале формируется эндостальное, а затем, несколько позже, периостальное сращение. Интермедиарное сращение образуется после восстановления кровоснабжения и расширения сосудистых каналов в концах отломков, в которых формируются новые остеоны (В. И. Стецула). При косых и винтообразных диафизарных переломах с хорошо сопоставленными отломками, когда сохраняется непрерывность костного мозга и внутрикостных сосудов, непосредственно в зоне перелома формируется быстрое костное сращение.

При дистракции оптимальные условия для репаративной регенерации костной ткани создаются в условиях неподвижности отломков и медленной дистракции. При несоблюдении этих условий диастаз заполняется волокнистой соединительной тканью, постепенно превращающейся в фиброзную ткань, а при выраженной подвижности отломков образуется также хрящевая ткань и формируется ложный сустав. При дозированной дистракции и неподвижности отломков диастаз между костными концами заполняется низкодифференцированной скелетогенной тканью, образующейся в условиях пролиферации стромы костного мозга. Новообразование костных балок появляется на обоих отломках, продолжается весь период дистракции на вершинах костной части регенерата, соединенных между собой коллагеновыми волокнами. С увеличением диастаза и созреванием обеих костных частей регенерата процесс новообразования продолжается на границе с соединительнотканной прослойкой путем отложения костного вещества на поверхности пучков коллагеновых волокон (десмальная оссификация).

Увеличение размеров регенерата в процессе его удлинения происходит за счет новообразования коллагеновых волокон в самой соединительнотканной прослойке; соединительнотканная прослойка в дистракционном регенерате выполняет функцию «зоны роста» (В. И. Стецула). После прекращения дистракции, при условии сохранения неподвижности отломков, фиброзная прослойка на стыке костных регенератов подвергается путем десмальной оссификации замещению костной тканью и последующей органной перестройке. В процессе лечения органной перестройке костной ткани и минерализации способствует дозированная нагрузка на конечность. При отсутствии неподвижности отломков процесс оссификации соединительнотканной прослойки резко задерживается и на границе ее с костными частями регенерата формируются замыкающие пластинки. При выраженной неподвижности отломков наступает частичная резорбция концов костных регенератов с замещением фиброзной тканью, может образоваться ложный сустав.

При удлинении различных сегментов конечностей и при разных уровнях остеотомии процесс формирования регенерата и перестройка его протекают однотипно. Однако в зависимости от уровня пересечения кости дистракцию начинают не сразу после операции, а только после соединения костных отломков новообразованной соединительной тканью. При вмешательстве на уровне метафиза ее начинают после операции через 5 — 7 дней, а диафиза — через 10—14 дней.

С помощью аппаратов оказалось возможным постепенное разъединение на уровне зоны роста эпифиза и метафиза костей. Такой способ удлинения трубчатых костей получил название дистракционного эпифизеолиза.

При дистракционном эпифизеолизе формирование регенерата протекает неодинаково. Чем крупнее участок кости, отрывающийся с зоной роста при остеоэпифизеолизе, тем активнее протекает репаративная регенерация костной ткани. Когда с пластинкой роста отрывается небольшое количество костной ткани, диастаз в основном заполняется регенератом, образующимся со стороны метафиза. Формирование костного регенерата на месте удлинения происходит также со стороны надкостницы и эпифиза.

Уровень репаративной регенерации костной ткани во многом зависит от степени травматизации тканей в области перелома: чем больше повреждены источники костеобразования, тем медленнее протекает процесс образования костной мозоли. Поэтому при лечении пострадавших с переломами предпочтительны методы, не связанные с нанесением дополнитель¬ной травмы.

В период формирования костной мозоли важно соблюдать механические факторы: точное сопоставление, создание контакта и надежного обездвиживания отломков.

В современных условиях имеется возможность способствовать улучшению условий репаративной регенерации костной ткани. Для этих целей применяют анаболические стероиды, электромагнитное поле, некоторые препараты.

Анаболические стероиды (ретаболил) влияют на процессы белкового обмена, способствуют синтезу белка, препятствуют развитию в организме посттравматических катаболических процессов и могут положительно влиять на процессы репаративной регенерации костной ткани. Особенно это влияние проявляется, когда репаративные процессы бывают по тем или иным причинам заторможены. Ретаболил вводят внутримышечно по 1 ампуле 3 раза с 10-дневным интервалом.

Электромагнитное поле создают искусственным путем: в одних случаях погружают в костную ткань специальные электроды и подключают к ним внешний источник питания, в других — с помощью магнитов. В последнем случае часть конечности, подлежащую воздействию, помещают в зону электромагнитного поля. Эффект зависит от многих условий: силы электромагнитного поля, частоты и продолжительности действия. Имеет значение и период репаративной регенерации кости. Проблема эта находится в стадии интенсивного научного изучения. Установлено, что в зависимости от создаваемых параметров электромагнитного поля можно улучшать регенерацию костной ткани или тормозить этот процесс.

С.С. Ткаченко

7 вопросов о регенерации костной ткани

24.05.2017
6886

1. Что такое регенерация костной ткани

В общем случае, регенерация костной ткани – это физиологический процесс, который, например, позволяет срастаться переломам и трещинам.

 Но в некоторых случаях требуется больший объем костной ткани, чем организм может восстановить самостоятельно. Такая ситуация часто складывается в стоматологии. Костная регенерация в стоматологической практике применяется для восстановления недостающего объема кости челюсти. Это операции по восстановлению, наращиванию и укреплению костной ткани челюсти при помощи различных методик. Операции по костной регенерации также называют костнопластическими.

костная регенерация перфект смайл

2. В каких случаях это может быть необходимо?

 

Прежде всего, при подготовке к проведению имплантации зубов. Если плотность и объем костной ткани не позволяют надежно установить один или несколько имплантатов, то без костнопластической операции не обойтись. Костная пластика может потребоваться для имплантации как  на верхней, так и на нижней челюсти.  Также костная регенерация применяется для лечения заболеваний пародонта.

3. Почему происходит убыль костной ткани?

Костная ткань челюсти может утрачиваться по целому ряду причин. Например, в результате длительного воспаления, травм, различных механических повреждений.

Постепенная убыль костной ткани происходит и в том случае, если зубов просто нет. При отсутствии жевательной нагрузки костная ткань постепенно рассасывается. Скорость этого процесса у каждого человека индивидуальна. Именно поэтому стоматологи настоятельно рекомендуют не затягивать с решением вопроса о восстановлении отсутствующих зубов. При этом также важно, чтобы зубной протез правильно распределял жевательную нагрузку. Длительное ношение неподходящих (натирающих, сломанных и т.д.) протезов приведет к тому же печальному результату.

Еще одна причина утраты кости – неправильный прикус, при котором жевательная нагрузка распределена неравномерно и некоторые зубы оказываются перегруженными.

Наконец, костная ткань убывает в результате естественного процесса старения организма.

Итак, причин, по которым может быть утрачена костная ткань, довольно много. К счастью, в современной стоматологии существуют методики, которые позволяют нарастить кость челюсти и укрепить ее.костная пластика перфектсмайл

4. Какие существуют способы регенерации костной ткани? 

Для увеличения объема костной ткани используются методики направленной костной регенерации, то есть наращивания кости там, где это необходимо. При этом может быть использован собственный костный материал пациента, донорский костный материал, материалы животного происхождения или синтетические. Выбор конкретной методики зависит от клинического случая и от предпочтений оперирующего хирурга.

Главное, что необходимо знать пациенту:

  • костная ткань не пересаживается, ее самостоятельно растит организм человека;
  • врач создает условия, в которых организм пациента сам растит кость там, где это необходимо;
  • условия для роста костной ткани: создание пространства, изолированного от любых тканей, кроме костных и неподвижное размещение в нем материала, в котором организм будет вынужден вырастить кость.

Процесс роста кости происходит таким образом: сначала в образовавшееся пространство врастают новые капилляры. Затем в подсаженный материал проникают клетки-предшественники (здесь решающее значение имеет неподвижность материала). Если клеткам-предшественникам созданы подходящие условия, они превращаются в костные клетки, синтезируют вокруг себя костный матрикс и получается кость.

Выбор оптимального метода создания условий для роста кости делает врач. Он может пользоваться костными блоками, костной стружкой или костными пластинками, использовать костные заменители в разных пропорциях, и так далее. Каждый из методов обладает своими преимуществами и недостатками, используется в тех или иных клинических ситуациях, поэтому именно врач должен решить, какой метод лучше подойдет пациенту для наращивания нужного объема кости.

5. Как происходит костнопластическая операция?

Обычно она проходит под местным обезболиванием. При необходимости пациент может находиться в медикаментозном сне. В некоторых случаях операция по увеличению объема костной ткани может производиться одновременно с установкой дентального имплантата, в других – пациенту приходится ждать несколько месяцев, чтобы костная ткань созрела. Обычно ожидание длится 4-6 месяцев, но в сложных случаях может быть и 9-12 месяцев.  

6. Есть ли противопоказания для операций по костной пластике? 

Да, они в основном совпадают с противопоказаниями к имплантации зубов, и делятся на абсолютные и относительные. К относительным, например, относится и наличие кариеса – источник постоянной инфекции в полости рта может стать причиной послеоперационных осложнений. Операцию отложат также и в случае общих инфекционных заболеваний, хронических заболеваний в стадии обострения, при беременности и лактации. К абсолютным противопоказаниям относятся некоторые заболевания крови, заболевания иммунной системы и другие.

7. Почему стоит обратиться в PerfectSmile?

Костная регенерация – одно из основных направлений работы клиники. В PerfectSmile владеют передовыми методиками костной пластики, которые позволяют создать нужный объем кости практически в любых ситуациях, даже если в других клиниках считают их безнадежными. В клинке осуществляется вертикальная и горизонтальная аугментация (наращивание кости), все виды синус-лифтинга и многое другое.

Врачи клиники прошли обучение у лучших мировых хирургов (основоположников методик направленной костной регенерации) и признаны российскими коллегами одними из лучших специалистов страны в данной области.
Успех костнопластических операций и хорошие долгосрочные результаты обеспечивают также огромный опыт работы в сочетании с постоянным совершенствованием.
Уровень квалификации хирургов PerfectSmile позволяет не только проводить успешное лечение, но и обучать врачейстоматологов методикам костной регенерации на авторских курсах в собственном учебном центре клиники.


Отправить ответ

avatar
  Подписаться  
Уведомление о