Содержание

Кальциевый обмен — SportWiki энциклопедия

Средства, влияющие на обмен кальция и метаболизм костной ткани[править | править код]

Раннее основой упор делался на гормональных механизмах поддержания постоянной концентрации кальция в крови, их нарушениях и способах коррекции этих нарушений. Однако за последние годы структура заболеваемости, связанной с нарушениями кальциевого обмена, существенно изменилась. Первичный гиперпаратиреоз диагностируется чаще, чем раньше, но обычно его симптомы слабо выражены, и он не всегда требует лечения. На первый же план выступили нарушения метаболизма костной ткани, а именно — остеопороз. Переломы, риск которых у больных остеопорозом резко повышен, особенно переломы шейки бедренной кости, стали важнейшей причиной инвалидности и смерти, а также увеличения медицинских расходов в развитых странах. Сегодня накоплено множество данных о возрастной динамике массы костной ткани и о роли генетических факторов, питания, физической активности и половых гормонов в метаболизме костей. Установлено, что любые факторы, способствующие возрастному уменьшению массы костной ткани, в конечном счете действуют через один механизм — нарушение процессов ее обновления.

Кость позвонка человека, больного остеопорозом. Сканирующий электронный микроскоп

Становится все более очевидным, что регулярные физические упражнения, достаточное потребление кальция (с пищевыми продуктами или в виде специальных добавок) и своевременная заместительная терапия эстрогенами тормозят обновление костной ткани, замедляют ее потерю и снижают риск переломов, то есть служат эффективным способом профилактики остеопороза. Что же касается лечения остеопороза, то оно и по сей день остается крайне трудной задачей. Эстрогены, кальций и другие лекарственные средства (например, дифосфонаты) тормозят резорбцию костей, но не стимулируют остеогенез и поэтому не решают проблему восстановления массы костной ткани. Более того, поскольку резорбция костей и остеогенез — два тесно связанных друг с другом процесса, обеспечивающих обновление костной ткани, подавление резорбции приводит к замедлению остеогенеза. Таким образом, важнейшая задача — получение лекарственных средств, способных увеличивать массу костной ткани. В качестве возможных средств для лечения остеопороза привлекают внимание аналоги ПТГ, витамин D и его производные, а также различные белки — регуляторы морфогенеза костей.

Сегодня известно, что витамин D влияет на дифференцировку клеток, причем это влияние не связанно с действием на обмен кальция. Кальцитриол — активная форма витамина D — оказался многообещающим средством лечения псориаза; проверяется действие этого препарата и при некоторых злокачественных новообразованиях. Лечебному применению кальцитриола препятствует влияние последнего на концентрацию кальция в крови, но сейчас появляются аналоги витамина D, не оказывающие такого действия. Это открывает новые возможности для применения препаратов витамина D при разных заболеваниях — от первичного и вторичного гиперпаратиреоза до злокачественных новообразований, в том числе лейкозов.

Кальций — основной внеклеточный двухвалентный катион. В организме здоровых мужчин и женщин содержится соответственно около 1300 и 1000 г кальция, из которых более 99% — в костях. Небольшие количества кальция присутствуют в плазме и межклеточной жидкости и еще меньшие — в клетках, где в покое концентрация ионизированного кальция составляет примерно 0,1 мкмоль/л. Под влиянием химических, электрических или механических стимулов кальций входит в клетки, и его внутриклеточная концентрация достигает 1 мкмоль/л. При этом он взаимодействует со специфическими кальцийсвязывающими белками, которые активируют множество внутриклеточных процессов. Главный кальцийсвязываюший белок — кальмодулин. Это высококонсервативный белок, каждый моль которого связывает 4 моля кальция. Ионы кальция необходимы для возбуждения нейронов, выделения медиаторов, мышечного сокращения, поддержания структуры мембран, свертывания крови и многих других физиологических реакций. Кроме того, кальций выполняет роль второго посредника многих гормонов, медиаторов и пр.

Осуществление всех этих разнообразных функций возможно лишь при определенной концентрации ионизированного кальция. В плазме человека концентрация кальция составляет 8,5—10,4 мг% (2,1—2,6 ммоль/л). Примерно 45% этого количества связано с белками (главным образом с альбумином) и 10% образует комплексы с анионами буферных систем (цитратом и фосфатами). Остальное приходится на долю ионизированного кальция, который и обладает физиологической активностью. Именно уменьшение концентрации ионизированного кальция вызывает симптомы гипокальциемии. Для того чтобы по общей концентрации кальция в плазме судить о концентрации ионизированного кальция, необходимо знать концентрацию белка. Здесь помогает следующее приблизительное правило: отклонение концентрации альбумина в плазме на 1 г% (норма — 4 г%) должно сопровождаться изменением общей концентрации кальция на 0,8 мг%.

Концентрация кальция в крови находится под строгим гормональным контролем. Гормоны влияют на его всасывание в кишечнике и выделение почками, а также регулируют поступление в кровь кальция, запасенного в костях. Запасы кальция. Более 99% всего кальция в организме содержится в костях в кристаллической форме, напоминающей минерал гидроксиапатит Са|0(РО4)6(ОН)2. Минеральное вещество костей содержит и другие ионы, в том числе натрий, калий, магний и фтор. Количество кальция в костях зависит от соотношения между резорбцией и остеогенезом — двух сопряженных процессов постоянного обновления костной ткани (см. ниже). Кроме того, в костях имеется лабильная фракция кальция, из которой он легко выходит в межклеточную жидкость костей, а из нее — в кровь. На скорость всех этих процессов влияют лекарственные средства, гормоны, витамины и другие факторы.

Всасывание и экскреция кальция[править | править код]

Жители США примерно 75% кальция, поступающего с пищей, получают с молоком и молочными продуктами. Суточная потребность в кальции у подростков составляет 1300 мг, у лиц до 24 лет — 1000 мг, у мужчин и женщин старше 50 лет — 1200мг(см. часть XIII, «Введение») (Institute of Medicine, 1997). В то же время медиана потребления кальция мальчиками и девочками в возрасте 9 лет и старше составляет соответственно 865 и 625 мг/сут, а у женщин после 50 лет она постепенно снижается до 517 мг/сут (Institute of Medicine, 1997).

На рис. 62.1

Рисунок 62.1. Обмен кальция. Приведены приблизительные величины суточных потоков кальция.

приведена схема обмена кальция. Кальций поступает в организм только из кишечника. В ЖКТ он усваивается лишь частично. Всасывание кальция обеспечивается двумя механизмами. В проксимальном отделе двенадцатиперстной кишки происходит активный витамин-Э-зависимый транспорт кальция. Кроме того, большое количество кальция всасывается путем облегченной диффузии по всей длине тонкой кишки. Обязательные потери кальция через кишечник составляют примерно 150 мг/сут; это количество содержится в секрете слизистой, желчи и слущивающихся клетках кишечника.

Усвояемость кальция обратно пропорциональна его потреблению: при низком содержании в пище доля всасываемого кальция возрастает, отчасти вследствие усиления активации витамина D. С возрастом эта компенсаторная реакция существенно ослабевает. Некоторые лекарственные средства (например, глюкокортикоиды и фенитоин) угнетают всасывание кальция. Определенные присутствующие в пище соединения (например, фитиновая и щавелевая кислоты) препятствуют всасыванию кальция, образуя с ним нерастворимые комплексы. Усвояемость кальция падает и при заболеваниях, сопровождающихся стеатореей, поносом или хроническим нарушением всасывания.

Экскреция кальция с мочой зависит от соотношения его клубочковой фильтрации и канальцевой реабсорбции. В сутки фильтруется примерно 9 г кальция, и более 98% этого количества реабсорбируется. Реабсорбция кальция регулируется ПТГ, но на нее влияют также количество фильтруемого натрия, присутствие нереабсорби-руемых анионов и диуретики. Экскреция кальция с мочой непосредственно связана с потреблением (а, соответственно, и с экскрецией) натрия. Петлевые диуретики увеличивают экскрецию кальция. Напротив, тиазидные диуретики обладают уникальной способностью нарушать связь между экскрецией натрия и кальция, приводя к снижению экскреции кальция (Lemann et al., 1985). Потребление белка также влияет на экскрецию кальция с мочой, что связано, вероятно, с действием серосодержащих аминокислот на функцию почечных канальцев. У здоровых людей содержание кальция в моче лишь в слабой степени зависит от его количества в пище. Во время лактации значительные количества кальция экскре-тируются с молоком. Небольшое количество этого элемента теряется с потом.

Обновление костной ткани[править | править код]

Сразу же после образования костной ткани в ней начинается непрерывный процесс обновления (резорбции и остеогенеза), который продолжается в течение всей жизни. После прекращения линейного роста, когда масса костной ткани достигает максимума, дальнейшие ее изменения в конечном счете определяются именно динамикой процессов обновления. Эти процессы независимо протекают в огромном количестве отдельных участков — единиц костного обновления (рис. 62.2)

Рисунок 62.2. Цикл обновления костной ткани.

. Обновление происходит на костной поверхности, примерно 90% которой в норме неактивно и покрыто тонкой клеточной выстилкой. В ответ на физические или биохимические сигналы костномозговые клетки-предшественники перемещаются к поверхности кости и, сливаясь друг с другом, превращаются в характерные многоядерные остеокласты; последние резорбируют расположенный под ними костный слой, образуя в нем углубления.

Образование остеокластов регулируется цитокинами (например, М-КСФ, ИЛ-1, ИЛ-6, фактором дифференцировки остеокластов), которые вырабатываются остеобластами. Недавние исследования проливают свет на механизмы этого процесса (Suda et al., 1999). Белок, продукция которого необходима для образования активных остеокластов, получил название RANK (Receptor for Activating NFkB“- рецептор, активирующий фактор транскрипции NFkB). Естественным лигандом этого рецептора служит фактор дифференцировки остеокластов (называемый также RANK-лигандом), расположенный на мембране остеобластов. Взаимодействуя с белком RANK, фактор дифференцировки остеокластов индуцирует созревание остеокластов. Действительно, антитела к этому фактору предотвращают усиливающее резорбцию действие многих регуляторов обновления костной ткани (Yasuda et al., 1998). Фактор дифференцировки остеокластов не только запускает дифференцировку предшественников остеокластов, но и активирует зрелые остеокласты (Jimi et al., 1999). Ц Остеобласты вырабатывают также растворимый ингибитор, называемый остеопротегерином, который выступает в роли ложного рецептора для фактора дифференцировки остеокластов. В условиях, способствующих усилению резорбции костной ткани (например, при дефиците эстрогенов), выработка остеопротегерина угнетается, фактор дифференцировки остеокластов свободно взаимодействует с белком RANK и образование остеокластов усиливается. При восстановлении уровня эстрогенов выработка остеопротегерина увеличивается и он препятствует связыванию фактора дифференцировки остеокластов с рецептором.

В результате резорбции в компактном веществе кости образуются туннели в каналах остеонов, а в губчатом веществе — неровные участки поверхности, носящие название резорбцион-ных (гаушиповых) лакун. По окончании резорбции остается полость глубиной около 60 мкм, граничащая в своей самой глубокой части с линией склеивания (областью рыхло организованных коллагеновых волокон). По завершении стадии резорбции на дно полости поступают преостеобласты, образующиеся из клеток стромы костного мозга. Преостеобласты приобретают характерные черты остеобластов и начинают восстанавливать резорбированную кость, образуя новые компоненты органического матриксаколлаген, остеокальцин и другие белки. Как только слой новообразованного органического матрикса достигает примерно 20 мкм, начинается его минерализация. Весь цикл обновления в норме занимает около 6 мес.

Если остеогенез количественно соответствует резорбции то обновление не приводит к изменению массы ткани. Однако в силу недостаточной эффективности обновления после каждого его цикла сохраняется небольшой дефицит массы. С годами такой дефицит увеличивается, чем и объясняется известное уменьшение массы костной ткани, начинающееся вскоре после прекращения роста. Изменение скорости обновления — это общий конечный механизм влияния различных стимулов (недостаточного питания, гормонов, лекарственных средств и т. п.) на состояние костей. Общая скорость обновления костной ткани зависит от динамики отдельных составляющих этого процесса. Гормональные изменения часто приводят к активации обновления костной ткани или увеличению количества единиц костного обновления. Это происходит, например, при тиреотоксикозе, гиперпаратиреозе и гипервитаминозе D. Другие факторы в частности высокие дозы глюкокортикоидов и этанол, нарушают функцию остеобластов. Наконец, дефицит эстрогенов, по-видимому, усиливает активность остеокластов (Marcus 1987; Dempster, 1992).

В каждый момент времени существует некоторый дефицит массы костной ткани, который определяется еще не заполненными очагами резорбции. В ответ на любой стимул, изменяющий скорость появления новых единиц костного обновления, этот дефицит увеличивается или уменьшается, пока не установится новое равновесие между резорбцией и остеогенезом.

Читайте основную статью: Физиология восстановления костной ткани

Нервы и мышцы[править | править код]

Умеренное повышение концентрации кальция во внеклеточной жидкости может и не сопровождаться клиническими признаками нарушения функции нервной и мышечной систем. Однако при выраженной гиперкальциемии возбудимость нервов и мышц снижается, что приводит к развитию мышечной слабости, сонливости и даже к коме. Напротив, умеренное снижение концентрации кальция повышает возбудимость, приводя к появлению симптомов Хвостека и Труссо,тетанических судорог и ларингоспазма. Считается, что поступление Са в клетки осуществляется: 1) путем облегченной диффузии (с помощью переносчика), 2) за счет Na+/CaJ+-o6MeHa, 3) через каналы. Проницаемость последних регулируется гормонами и медиаторами, а во многих клетках эти каналы являются потенциалзависимыми. В печени и скелетных мышцах внутриклеточный кальций обратимо поглощается соответственно эндоплазматическим и саркоплазматическим ретикулумом.

Ионы кальция играют важную роль в электромеханическом сопряжении. Потенциал действия вызывает высвобождение кальция из саркоплазматического ретикулума мышечной клетки. Освобожденный кальций связывается с тропонином, снимая блокирующее влияние тропомиозина на взаимодействие актина с миозином, и тем самым активирует процесс сокращения. Когда кальций вновь поглощается саркоплазматическим ретикулумом, восстанавливается блокирующее действие тропомиозина и мышца расслабляется.

Ионы кальция необходимы и для экзоцитоза, поэтому они играют важную роль в сопряжении стимуляции с секрецией в большинстве экзокринных и эндокринных желез. Секреция катехоламинов мозговым веществом надпочечников, выделение медиаторов в синапсах и высвобождение некоторых других биологически активных веществ (например, гистамина тучными клетками) — все эти процессы требуют присутствия кальция. Сердечно-сосудистая система. Ионы кальция играют важнейшую роль в электромеханическом сопряжении в сердечной мышце, а также в проведении электрических импульсов по определенным участкам сердца, в частности в АВ-узле. Деполяризация волокон сердечной мышцы открывает потенциалзависимые кальциевые каналы (так называемые медленные кальциевые каналы), через которые во время плато потенциала действия кальций поступает внутрь клетки. Локальное повышение концентрации кальция вызывает открывание кальциевых каналов саркоплазматического ретикулума, что еще больше увеличивает концентрацию кальция в цитоплазме и приводит к сокращению. В некоторых клетках, например в клетках АВ-узла, потенциал действия почти полностью обеспечивается за счет поступления кальция через медленные кальциевые каналы.

В гладких мышцах, в том числе в гладких мышцах сосудов, кальций обеспечивает сокращение и часто создает существенную часть деполяризующего тока. Поэтому антагонисты кальция оказывают сильное влияние на сократимость миокарда и гладких мышц сосудов, равно как и на проведение импульсов в сердце. Эти препараты занимают важное место среди антиангинальных, антиаритмических и гипотензивных средств. Прочие эффекты. Ионы кальция поддерживают целость слизистых, участвуют в адгезии клеток и обеспечивают функции клеточных мембран. Кальций играет важную роль в механизмах свертывания крови, хотя и не применяется в качестве лечебного средства при нарушениях свертывания. Кальция хлорид оказывает закисляющее действие на мочу (хотя соли аммония в этом отношении гораздо эффективнее) и способствует диурезу.

sportwiki.to

Кальциевый обмен — SportWiki энциклопедия

Средства, влияющие на обмен кальция и метаболизм костной ткани[править | править код]

Раннее основой упор делался на гормональных механизмах поддержания постоянной концентрации кальция в крови, их нарушениях и способах коррекции этих нарушений. Однако за последние годы структура заболеваемости, связанной с нарушениями кальциевого обмена, существенно изменилась. Первичный гиперпаратиреоз диагностируется чаще, чем раньше, но обычно его симптомы слабо выражены, и он не всегда требует лечения. На первый же план выступили нарушения метаболизма костной ткани, а именно — остеопороз. Переломы, риск которых у больных остеопорозом резко повышен, особенно переломы шейки бедренной кости, стали важнейшей причиной инвалидности и смерти, а также увеличения медицинских расходов в развитых странах. Сегодня накоплено множество данных о возрастной динамике массы костной ткани и о роли генетических факторов, питания, физической активности и половых гормонов в метаболизме костей. Установлено, что любые факторы, способствующие возрастному уменьшению массы костной ткани, в конечном счете действуют через один механизм — нарушение процессов ее обновления.

Кость позвонка человека, больного остеопорозом. Сканирующий электронный микроскоп

Становится все более очевидным, что регулярные физические упражнения, достаточное потребление кальция (с пищевыми продуктами или в виде специальных добавок) и своевременная заместительная терапия эстрогенами тормозят обновление костной ткани, замедляют ее потерю и снижают риск переломов, то есть служат эффективным способом профилактики остеопороза. Что же касается лечения остеопороза, то оно и по сей день остается крайне трудной задачей. Эстрогены, кальций и другие лекарственные средства (например, дифосфонаты) тормозят резорбцию костей, но не стимулируют остеогенез и поэтому не решают проблему восстановления массы костной ткани. Более того, поскольку резорбция костей и остеогенез — два тесно связанных друг с другом процесса, обеспечивающих обновление костной ткани, подавление резорбции приводит к замедлению остеогенеза. Таким образом, важнейшая задача — получение лекарственных средств, способных увеличивать массу костной ткани. В качестве возможных средств для лечения остеопороза привлекают внимание аналоги ПТГ, витамин D и его производные, а также различные белки — регуляторы морфогенеза костей.

Сегодня известно, что витамин D влияет на дифференцировку клеток, причем это влияние не связанно с действием на обмен кальция. Кальцитриол — активная форма витамина D — оказался многообещающим средством лечения псориаза; проверяется действие этого препарата и при некоторых злокачественных новообразованиях. Лечебному применению кальцитриола препятствует влияние последнего на концентрацию кальция в крови, но сейчас появляются аналоги витамина D, не оказывающие такого действия. Это открывает новые возможности для применения препаратов витамина D при разных заболеваниях — от первичного и вторичного гиперпаратиреоза до злокачественных новообразований, в том числе лейкозов.

Кальций — основной внеклеточный двухвалентный катион. В организме здоровых мужчин и женщин содержится соответственно около 1300 и 1000 г кальция, из которых более 99% — в костях. Небольшие количества кальция присутствуют в плазме и межклеточной жидкости и еще меньшие — в клетках, где в покое концентрация ионизированного кальция составляет примерно 0,1 мкмоль/л. Под влиянием химических, электрических или механических стимулов кальций входит в клетки, и его внутриклеточная концентрация достигает 1 мкмоль/л. При этом он взаимодействует со специфическими кальцийсвязывающими белками, которые активируют множество внутриклеточных процессов. Главный кальцийсвязываюший белок — кальмодулин. Это высококонсервативный белок, каждый моль которого связывает 4 моля кальция. Ионы кальция необходимы для возбуждения нейронов, выделения медиаторов, мышечного сокращения, поддержания структуры мембран, свертывания крови и многих других физиологических реакций. Кроме того, кальций выполняет роль второго посредника многих гормонов, медиаторов и пр.

Осуществление всех этих разнообразных функций возможно лишь при определенной концентрации ионизированного кальция. В плазме человека концентрация кальция составляет 8,5—10,4 мг% (2,1—2,6 ммоль/л). Примерно 45% этого количества связано с белками (главным образом с альбумином) и 10% образует комплексы с анионами буферных систем (цитратом и фосфатами). Остальное приходится на долю ионизированного кальция, который и обладает физиологической активностью. Именно уменьшение концентрации ионизированного кальция вызывает симптомы гипокальциемии. Для того чтобы по общей концентрации кальция в плазме судить о концентрации ионизированного кальция, необходимо знать концентрацию белка. Здесь помогает следующее приблизительное правило: отклонение концентрации альбумина в плазме на 1 г% (норма — 4 г%) должно сопровождаться изменением общей концентрации кальция на 0,8 мг%.

Концентрация кальция в крови находится под строгим гормональным контролем. Гормоны влияют на его всасывание в кишечнике и выделение почками, а также регулируют поступление в кровь кальция, запасенного в костях. Запасы кальция. Более 99% всего кальция в организме содержится в костях в кристаллической форме, напоминающей минерал гидроксиапатит Са|0(РО4)6(ОН)2. Минеральное вещество костей содержит и другие ионы, в том числе натрий, калий, магний и фтор. Количество кальция в костях зависит от соотношения между резорбцией и остеогенезом — двух сопряженных процессов постоянного обновления костной ткани (см. ниже). Кроме того, в костях имеется лабильная фракция кальция, из которой он легко выходит в межклеточную жидкость костей, а из нее — в кровь. На скорость всех этих процессов влияют лекарственные средства, гормоны, витамины и другие факторы.

Всасывание и экскреция кальция[править | править код]

Жители США примерно 75% кальция, поступающего с пищей, получают с молоком и молочными продуктами. Суточная потребность в кальции у подростков составляет 1300 мг, у лиц до 24 лет — 1000 мг, у мужчин и женщин старше 50 лет — 1200мг(см. часть XIII, «Введение») (Institute of Medicine, 1997). В то же время медиана потребления кальция мальчиками и девочками в возрасте 9 лет и старше составляет соответственно 865 и 625 мг/сут, а у женщин после 50 лет она постепенно снижается до 517 мг/сут (Institute of Medicine, 1997).

На рис. 62.1

Рисунок 62.1. Обмен кальция. Приведены приблизительные величины суточных потоков кальция.

приведена схема обмена кальция. Кальций поступает в организм только из кишечника. В ЖКТ он усваивается лишь частично. Всасывание кальция обеспечивается двумя механизмами. В проксимальном отделе двенадцатиперстной кишки происходит активный витамин-Э-зависимый транспорт кальция. Кроме того, большое количество кальция всасывается путем облегченной диффузии по всей длине тонкой кишки. Обязательные потери кальция через кишечник составляют примерно 150 мг/сут; это количество содержится в секрете слизистой, желчи и слущивающихся клетках кишечника.

Усвояемость кальция обратно пропорциональна его потреблению: при низком содержании в пище доля всасываемого кальция возрастает, отчасти вследствие усиления активации витамина D. С возрастом эта компенсаторная реакция существенно ослабевает. Некоторые лекарственные средства (например, глюкокортикоиды и фенитоин) угнетают всасывание кальция. Определенные присутствующие в пище соединения (например, фитиновая и щавелевая кислоты) препятствуют всасыванию кальция, образуя с ним нерастворимые комплексы. Усвояемость кальция падает и при заболеваниях, сопровождающихся стеатореей, поносом или хроническим нарушением всасывания.

Экскреция кальция с мочой зависит от соотношения его клубочковой фильтрации и канальцевой реабсорбции. В сутки фильтруется примерно 9 г кальция, и более 98% этого количества реабсорбируется. Реабсорбция кальция регулируется ПТГ, но на нее влияют также количество фильтруемого натрия, присутствие нереабсорби-руемых анионов и диуретики. Экскреция кальция с мочой непосредственно связана с потреблением (а, соответственно, и с экскрецией) натрия. Петлевые диуретики увеличивают экскрецию кальция. Напротив, тиазидные диуретики обладают уникальной способностью нарушать связь между экскрецией натрия и кальция, приводя к снижению экскреции кальция (Lemann et al., 1985). Потребление белка также влияет на экскрецию кальция с мочой, что связано, вероятно, с действием серосодержащих аминокислот на функцию почечных канальцев. У здоровых людей содержание кальция в моче лишь в слабой степени зависит от его количества в пище. Во время лактации значительные количества кальция экскре-тируются с молоком. Небольшое количество этого элемента теряется с потом.

Обновление костной ткани[править | править код]

Сразу же после образования костной ткани в ней начинается непрерывный процесс обновления (резорбции и остеогенеза), который продолжается в течение всей жизни. После прекращения линейного роста, когда масса костной ткани достигает максимума, дальнейшие ее изменения в конечном счете определяются именно динамикой процессов обновления. Эти процессы независимо протекают в огромном количестве отдельных участков — единиц костного обновления (рис. 62.2)

Рисунок 62.2. Цикл обновления костной ткани.

. Обновление происходит на костной поверхности, примерно 90% которой в норме неактивно и покрыто тонкой клеточной выстилкой. В ответ на физические или биохимические сигналы костномозговые клетки-предшественники перемещаются к поверхности кости и, сливаясь друг с другом, превращаются в характерные многоядерные остеокласты; последние резорбируют расположенный под ними костный слой, образуя в нем углубления.

Образование остеокластов регулируется цитокинами (например, М-КСФ, ИЛ-1, ИЛ-6, фактором дифференцировки остеокластов), которые вырабатываются остеобластами. Недавние исследования проливают свет на механизмы этого процесса (Suda et al., 1999). Белок, продукция которого необходима для образования активных остеокластов, получил название RANK (Receptor for Activating NFkB“- рецептор, активирующий фактор транскрипции NFkB). Естественным лигандом этого рецептора служит фактор дифференцировки остеокластов (называемый также RANK-лигандом), расположенный на мембране остеобластов. Взаимодействуя с белком RANK, фактор дифференцировки остеокластов индуцирует созревание остеокластов. Действительно, антитела к этому фактору предотвращают усиливающее резорбцию действие многих регуляторов обновления костной ткани (Yasuda et al., 1998). Фактор дифференцировки остеокластов не только запускает дифференцировку предшественников остеокластов, но и активирует зрелые остеокласты (Jimi et al., 1999). Ц Остеобласты вырабатывают также растворимый ингибитор, называемый остеопротегерином, который выступает в роли ложного рецептора для фактора дифференцировки остеокластов. В условиях, способствующих усилению резорбции костной ткани (например, при дефиците эстрогенов), выработка остеопротегерина угнетается, фактор дифференцировки остеокластов свободно взаимодействует с белком RANK и образование остеокластов усиливается. При восстановлении уровня эстрогенов выработка остеопротегерина увеличивается и он препятствует связыванию фактора дифференцировки остеокластов с рецептором.

В результате резорбции в компактном веществе кости образуются туннели в каналах остеонов, а в губчатом веществе — неровные участки поверхности, носящие название резорбцион-ных (гаушиповых) лакун. По окончании резорбции остается полость глубиной около 60 мкм, граничащая в своей самой глубокой части с линией склеивания (областью рыхло организованных коллагеновых волокон). По завершении стадии резорбции на дно полости поступают преостеобласты, образующиеся из клеток стромы костного мозга. Преостеобласты приобретают характерные черты остеобластов и начинают восстанавливать резорбированную кость, образуя новые компоненты органического матриксаколлаген, остеокальцин и другие белки. Как только слой новообразованного органического матрикса достигает примерно 20 мкм, начинается его минерализация. Весь цикл обновления в норме занимает около 6 мес.

Если остеогенез количественно соответствует резорбции то обновление не приводит к изменению массы ткани. Однако в силу недостаточной эффективности обновления после каждого его цикла сохраняется небольшой дефицит массы. С годами такой дефицит увеличивается, чем и объясняется известное уменьшение массы костной ткани, начинающееся вскоре после прекращения роста. Изменение скорости обновления — это общий конечный механизм влияния различных стимулов (недостаточного питания, гормонов, лекарственных средств и т. п.) на состояние костей. Общая скорость обновления костной ткани зависит от динамики отдельных составляющих этого процесса. Гормональные изменения часто приводят к активации обновления костной ткани или увеличению количества единиц костного обновления. Это происходит, например, при тиреотоксикозе, гиперпаратиреозе и гипервитаминозе D. Другие факторы в частности высокие дозы глюкокортикоидов и этанол, нарушают функцию остеобластов. Наконец, дефицит эстрогенов, по-видимому, усиливает активность остеокластов (Marcus 1987; Dempster, 1992).

В каждый момент времени существует некоторый дефицит массы костной ткани, который определяется еще не заполненными очагами резорбции. В ответ на любой стимул, изменяющий скорость появления новых единиц костного обновления, этот дефицит увеличивается или уменьшается, пока не установится новое равновесие между резорбцией и остеогенезом.

Читайте основную статью: Физиология восстановления костной ткани

Нервы и мышцы[править | править код]

Умеренное повышение концентрации кальция во внеклеточной жидкости может и не сопровождаться клиническими признаками нарушения функции нервной и мышечной систем. Однако при выраженной гиперкальциемии возбудимость нервов и мышц снижается, что приводит к развитию мышечной слабости, сонливости и даже к коме. Напротив, умеренное снижение концентрации кальция повышает возбудимость, приводя к появлению симптомов Хвостека и Труссо,тетанических судорог и ларингоспазма. Считается, что поступление Са в клетки осуществляется: 1) путем облегченной диффузии (с помощью переносчика), 2) за счет Na+/CaJ+-o6MeHa, 3) через каналы. Проницаемость последних регулируется гормонами и медиаторами, а во многих клетках эти каналы являются потенциалзависимыми. В печени и скелетных мышцах внутриклеточный кальций обратимо поглощается соответственно эндоплазматическим и саркоплазматическим ретикулумом.

Ионы кальция играют важную роль в электромеханическом сопряжении. Потенциал действия вызывает высвобождение кальция из саркоплазматического ретикулума мышечной клетки. Освобожденный кальций связывается с тропонином, снимая блокирующее влияние тропомиозина на взаимодействие актина с миозином, и тем самым активирует процесс сокращения. Когда кальций вновь поглощается саркоплазматическим ретикулумом, восстанавливается блокирующее действие тропомиозина и мышца расслабляется.

Ионы кальция необходимы и для экзоцитоза, поэтому они играют важную роль в сопряжении стимуляции с секрецией в большинстве экзокринных и эндокринных желез. Секреция катехоламинов мозговым веществом надпочечников, выделение медиаторов в синапсах и высвобождение некоторых других биологически активных веществ (например, гистамина тучными клетками) — все эти процессы требуют присутствия кальция. Сердечно-сосудистая система. Ионы кальция играют важнейшую роль в электромеханическом сопряжении в сердечной мышце, а также в проведении электрических импульсов по определенным участкам сердца, в частности в АВ-узле. Деполяризация волокон сердечной мышцы открывает потенциалзависимые кальциевые каналы (так называемые медленные кальциевые каналы), через которые во время плато потенциала действия кальций поступает внутрь клетки. Локальное повышение концентрации кальция вызывает открывание кальциевых каналов саркоплазматического ретикулума, что еще больше увеличивает концентрацию кальция в цитоплазме и приводит к сокращению. В некоторых клетках, например в клетках АВ-узла, потенциал действия почти полностью обеспечивается за счет поступления кальция через медленные кальциевые каналы.

В гладких мышцах, в том числе в гладких мышцах сосудов, кальций обеспечивает сокращение и часто создает существенную часть деполяризующего тока. Поэтому антагонисты кальция оказывают сильное влияние на сократимость миокарда и гладких мышц сосудов, равно как и на проведение импульсов в сердце. Эти препараты занимают важное место среди антиангинальных, антиаритмических и гипотензивных средств. Прочие эффекты. Ионы кальция поддерживают целость слизистых, участвуют в адгезии клеток и обеспечивают функции клеточных мембран. Кальций играет важную роль в механизмах свертывания крови, хотя и не применяется в качестве лечебного средства при нарушениях свертывания. Кальция хлорид оказывает закисляющее действие на мочу (хотя соли аммония в этом отношении гораздо эффективнее) и способствует диурезу.

beta.sportwiki.to

— гормоны обмена кальция — Биохимия

За обмен кальция и фосфатов в организме отвечают три гормона – кальцитриол, кальцитонин и паратиреоидный гормон.

Кальцитриол



Строение кальцитриола

Строение

Представляет собой производное витамина D и относится к стероидам.

Синтез

Образующийся в коже под действием ультрафиолета и поступающие с пищей холекальциферол (витамин D3) и эргокальциферол (витамин D2) гидроксилируются в гепатоцитах по С25 и в эпителии проксимальных канальцев почек по С1. В результате формируется 1,25-диоксихолекальциферол (кальцитриол).

Активность 1α-гидроксилазы обнаружена во многих клетках и значение этого заключается в активации 25-оксихолекальциферола для собственных нужд клетки (аутокринное и паракринное действие).

Регуляция синтеза и секреции

Активируют: Гипокальциемия повышает гидроксилирование витамина D по С1 в почках через увеличение секреции паратгормона, стимулирующего этот процесс.

Уменьшают: Избыток кальцитриола подавляет гидроксилирование по С1 в почках.

Механизм действия

Цитозольный.

Мишени и эффекты

См также биохимические функции витамина D.

Рецепторы к кальцитриолу обнаружены практически во всех тканях. Эффекты гормона могут быть геномные и негеномные, эндокринные и паракринные.

1. Геномный эффект кальцитриола заключается в регуляции концентрации кальция и фосфора в крови:

  • в кишечнике индуцирует синтез белков, отвечающих за всасывание кальция и фосфатов,
  • в почечных канальцах повышает синтез белков-каналов для реабсорбции ионов кальция и фосфатов,
  • в костной ткани усиливает активность остеобластов и остеокластов.

2. Посредством негеномных паракринных механизмов гормон регулирует количество ионов Ca2+ в клетке

  • способствует минерализации кости остеобластами,
  • влияет на активность иммунных клеток, модулируя их иммунные реакции,
  • участвует в проведении нервного возбуждения,
  • поддерживает тонус сердечной и скелетной мускулатуры,
  • влияет на пролиферацию клеток.

3. Также действие кальцитриола сопровождается подавлением секреции паратиреоидного гормона.

Патология

Гипофункция

Соответствует картине гиповитаминоза D.

Паратиреоидный гормон

Строение

Представляет собой пептид из 84 аминокислот с молекулярной массой 9,5 кДа.

Синтез

Идет в паращитовидных железах. Реакции синтеза гормона высоко активны.


Регуляция синтеза паратирина

Регуляция синтеза и секреции

Активирует образование гормона гипокальциемия.

Уменьшают высокие концентрации кальция через активацию кальций-чувствительной протеазы, гидролизующей один из предшественников гормона.

Механизм действия

Аденилатциклазный.

Мишени и эффекты

Эффект паратиреоидного гормона заключается в увеличении концентрации кальция и снижении концентрации фосфатов в крови.

Это достигается тремя способами:

Костная ткань
  • при высоком уровне гормона активируются остеокласты и происходит деструкция костной ткани,
  • при низких концентрациях активируется перестройка кости и остеогенез.
Почки
  • увеличивается реабсорбция кальция и магния,
  • уменьшается реабсорбция фосфатов, аминокислот, карбонатов, натрия, хлоридов, сульфатов.
  • также гормон стимулирует образование кальцитриола (гидроксилирование по С1).
Кишечник
  • при участии кальцитриола усиливается всасывание кальция и фосфатов.

Гипофункция

Возникает при случайном удалении железы при операциях на щитовидной железе или при аутоиммунной деструкции ткани желез. Возникающая гипокальциемия и гиперфосфатемия проявляется в виде высокой нервно-мышечной возбудимости, судорог, тетании. При резком снижении кальция возникает дыхательный паралич, ларингоспазм.

Гиперфункция

Первичный гиперпаратиреоз возникает при аденоме желез. Нарастающая гиперкальциемия вызывает повреждение почек, мочекаменную болезнь.

Вторичный гиперпаратиреоз является результатом почечной недостаточности, при которой происходит нарушение образования кальцитриола, снижение концентрации кальция в крови и компенсаторное возрастание синтеза паратиреоидного гормона.

Кальцитонин

Строение

Представляет собой пептид, включающий 32 аминокислоты с молекулярной массой 3,6 кДа.

Синтез

Осуществляется в парафолликулярных клетках щитовидной железы.

Регуляция синтеза и секреции

Активируют: ионы кальция, глюкагон.

Механизм действия

Аденилатциклазный

Мишени и эффекты

Эффект кальцитонина заключается в уменьшении концентрации кальция и фосфатов в крови:

  • в костной ткани подавляет активность остеокластов, что улучшает вход кальция и фосфатов в кость,
  • в почках подавляет реабсорбцию ионов Ca2+, фосфатов, Na+, K+, Mg2+.

biokhimija.ru

Регуляция кальциевого обмена — Диагностер

Витамин Д — первый регулятор кальциевого обмена

Два пути поступления витамина Д в организм

  1. В продуктах растительного и животного происхождения обнаружены семь разновидностей витамина Д. Наибольшей биологической активностью обладают витамины Д3 (животного происхождения) — холекальциферол и витамин Д2 (растительного происхождения) — эргокальциферол.
  2. Под действием ультрафиолетовых лучей с длиной волны 280-310 мкм в коже провитамин Д (7-дегидрохолестерин) превращается в витамин D3.

Одна часть поступающего после кишечного всасывания или кожного синтеза витамина Д фиксируется в жировых тканях и мышцах, представляя собой резервную форму, другая — переносится в печень. Витамины Д2 и Д3 не обладают биологической активностью. Для того, чтобы оказать действие на органы-мишени, они должны подвергнуться двум ферментативным гидроксилированиям:

  1. В печени витамин Д под действием печеночного фермента 25-гидроксилазы трансформируется в 25(ОН)-Д3 — 25-гидроксивитамин D3 или кальцидиол.
  2. В почках митохондриальный фермент 1-альфа-гидроксилаза трансформирует 25(ОН)Д3 в 1,25(ОН)2Д3 — 1,25-дигидроксивитамин Д3 или кальцитриол.

Самый активный метаболит витамина Д кальцитриол — это гормон. Под действием кальцитриола в слизистой кишечника образуется кальций связывающий белок. Последний способствует всасыванию кальция в кишечнике, обеспечивая потребность организма в кальции и фосфоре.

Функции витамина Д и его активных метаболитов

  1. всасывание кальция в кишечнике;
  2. увеличение реабсорбции (обратного всасывания) кальция и фосфора в почечных канальцах;
  3. содействие минерализации костей;
  4. иммуномодулирующее действие;
  5. стимуляция реакций пируват > цитрат в цикле Кребса.

Паратгормон — второй регулятор кальциевого обмена

Паратгормон синтезируется паращитовидными железами. Паратгормон регулирует кальций-фосфорный обмен. Паратгормон осуществляет быструю (экстренную) регуляцию уровня кальция в крови, в то время как постоянная регуляция происходит с помощью производных витамина Д. Сигналом для повышения продукции паратгормона служит низкая концентрация ионизированного кальция в крови. Часто причиной низкого уровня кальция в крови является дефицит витамина Д.

При дефиците витамина Д

  1. кальций и фосфор не всасываются из кишечника, а проходят транзитом;
  2. в почечных канальцах снижен обратный захват кальция и фосфора — отсюда избыточная потеря кальция через почки.

Под влиянием паратгормона кальций кости переходит в растворимую форму, благодаря чему уровень кальция в крови временно поддерживается на нормальном уровне. Одновременно паратгормон подавляет обратный захват (реабсорбцию) фосфатов в почечных канальцах, благодаря чему достаточно жестко регулируется соотношение Са: Р на ионном уровне. При последующем поступлении витамина Д увеличивается продукция кальцитонина, обеспечивающего возврат кальция в костную ткань и подавление секреции паратгормона.

При избытке паратгормона отмечается повышенный уровень фосфатов в моче (гиперфосфатурии), снижение фосфатов в крови (гипофосфатемии), снижение минерализации костей (остеопения, остеомаляция, остеопороз).

Важно!!! У недоношенных детей часто повышен уровень паратгормона — функциональный гиперпаратиреоидизм. Это содействует размягчению и деформации костей (остеомаляции).

Кальциотонин — третий регулятор кальциевого обмена

Кальцитонин, продуцируется особой эндокринной железой, расположенной в щитовидной железе в виде С-клеток парафолликулярного аппарата.

Кальцитонин является мощным антагонистом паратгормона

  1. подавляет резорбцию кости;
  2. усиливает отложение кальция в кость, тем самым препятствует развитию остеомаляции (рахита) и остеопороза;
  3. увеличивает выведение кальция из организма с мочой, тем самым защищает организм от гиперкальциемических состояний любой этиологии, в том числе при передозировке витамина Д.

В регуляции кальциевого обмена также принимают участие гормоны щитовидной железы (тироксин, трийодтиронин), эстрогены, андрогены, соматотропный гормон, инсулин и другие, окончательная роль которых уточняется.

Смотри еще:

У кого и почему бывает рахит
Признаки рахита
Лечение и профилактика рахита
Инструкция АкваДетрим
Инструкция Вигантол
Витамины и микроэлементы: в каких продуктах содержатся и что бывает при их дефиците
Отчего бывает низкий уровень кальция в крови и сильные деформации скелета у детей

diagnoster.ru

Нарушения фосфорно-кальциевого обмена. « Блог «Будьте Здоровы!»

Нарушения фосфорно-кальциевого обмена широко распространены как у взрослых, так и у детей. Более всего сегодня актуальна проблема остеопороза, которая признана одной из ведущих патологий опорно-двигательного аппарата у людей среднего и пожилого возраста.

Развитию этого комплексного заболевания
предшествуют изменения минерального обмена, нередко диагностируемые уже в
раннем детском возрасте, к примеру, D-дефицитный рахит. Медицинские
исследователи подчеркивают, что практически любые нарушения
фосфорно-кальциевого обмена берут свое начало именно в детстве, создавая основу
для развития серьезных заболеваний у взрослых.

Фосфорно-кальциевый обмен и возможные
нарушения.

Выраженные изменения обмена кальция и фосфора
в организме проявляются не только развитием заболеваний костной системы
(уменьшение плотности костной ткани, повышенная ломкость костей и пр.), в
процессе оказываются задействованными сердечно-сосудистая, нервная, дыхательные
системы, а также наблюдаются отклонения психического статуса.

Нарушения фосфорно-кальциевого обмена характеризуются:

  • Гипокальциемия
    и гипофосфатемия – состояния, связанные с выраженным снижением концентрации
    соответствующих элементов в крови вследствие воздействия различных факторов.
  • Остеопения
    и остеопороз – снижение минеральной плотности кости вплоть до развития
    системного заболевания скелета, развивается по причине нарушения минерального
    обмена под воздействием различных факторов.
  • Гиперкальциемия
    и гиперфосфатемия – менее распространенные заболевания, характеризующиеся
    повышенным содержанием кальция и фосфора в крови. В большинстве случаев
    является следствием тяжелых хрнических патологий (злокачественные опухоли,
    саркоидоз, гиперпаратиреоз и пр.)
НАРУШЕНИЕ
ФОСФОРНО-
КАЛЬЦИЕВОГО
ОБМЕНА
СИМПТОМЫ
(ВСЕ СИСТЕМЫ
ОРГАНИЗМА)
ИССЛЕДОВАНИЯ ПРИЧИНЫ
(НАИБОЛЕЕ
ВЕРОЯТНЫЕ)
Гипо-
кальциемия
Раздражительность,
мышечные
судороги,
нервная возбудимость, пониженное АД, бронхоспазм, дерматиты, облысение, сердечная недостаточность, аритмии.
Альбумин сыворотки, корректированный кальций сыворотки, ионизированный кальций, концентрация магния в сыворотке, фосфора в сыворотке и моче, кальцитонин, метаболиты витамина D Недостаток паратиреоидного гормона, нарушение обмена витамина D, операция на щитовидной железе, дефицит магния.
Гипо-
фосфатемия
Дыхательная недостаточность, мышечная слабость, дрожание конечностей, нарушение чувствительности, снижение иммунитета. Концентрация фосфора в суточной моче, паратиреоидный гормон, метаболиты витамина D. Операции на паращитовидных железах, злокачественные опухоли, гиперпаратиреоз, нарушения метаболизма витамина D.
Остеопения Бессимптомно. Рентгенодиагностика, золотой стандарт – рентгеновская денситометрия (количественная оценка минеральной плотности кости) Нарушение питания в детстве и подростковом периоде, заболевания, приводящие к ограничению двигательной активности, поздняя половая зрелость, чрезмерные физические нагрузки (профессиональный спорт)
Остеопороз В начальных стадиях бессимптомно, затем – повышенная ломкость костей, частые переломы, боли в спине, изменение осанки, ограничение двигательной активности. Рентгенодиагностика, золотой стандарт – рентгеновская денситометрия (количественная оценка минеральной плотности кости). Лабораторные показатели фосфорно-кальциевого обмена. Низкая пиковая костная масса по причине нарушений питания в детстве и генетических факторов, менопауза, потеря костной массы из-за приема лекарств, гормональных и обменных нарушений, аутоиммунных заболеваний, резкого дефицита витамина D.

Стоит отметить, что все нарушения фосфорно-кальциевого обмена, включая остеопороз, к настоящему моменту хорошо изучены и могут быть своевременно диагностированы. Ранее начало профилактических и лечебных мероприятий способствует сохранению здоровья опорно-двигательного аппарата и всего организма в целом. Меры считаются эффективными в рамках профилактики остеопороза.

Профилактика и коррекция остеопении и
остеопороза.

Поскольку содержание кальция и фосфора в
костях, плазме крови, клетках организма регулируется посредством сложной схемы,
в которую включены гормоны (паратиреоидный гормон, D-гормон,
или кальцитриол, кальцитонин, фосфатурический гормон, клото и др.), то при уже
развившихся патологиях повлиять на концентрацию минералов в крови исключительно
с помощью пищевых факторов практически невозможно.

Дело в том, что насыщенный необходимыми
нутриентами рацион важен в детском и подростковом возрасте, когда
опорно-двигательный аппарат растет, и особенно в период полового созревания,
когда достигается до 30-40% пиковой костной массы.

В этом периоде имеет значение обогащенное
питание с высоким содержанием кальция, витамина D,
животных белков и жиров (молочные, рыбные, мясные продукты). Вместе с
адекватной физической активностью и здоровым образом жизни эти меры
способствуют уменьшению отсроченных рисков остеопении и остеопороза во взрослом
возрасте.

Перечисленные меры рекомендованы также для
пациентов среднего и пожилого возраста при легкой гипокальциемии вместе с
препаратами кальция и нативного витамина D3, при выраженном
уменьшении плотности костной ткани.

Обратите внимание, что остеопороз – это серьезное
заболевание и лечение его без участия врача невозможно. В схему лечения данного
заболевания включаются различные препараты, большинство которых выписываются
врачом. Они обладают специфическим действием и предназначены для применения под
строгим медицинским контролем.

При остеопорозе назначаются специальные
средства, регулирующие всасывание кальция (и фосфора) в кишечнике, повышающие
минерализацию костной ткани, прием которых постепенно приводит к нормализации
показателей фосфорно-кальциевого обмена: это антирезорбтивные препараты,
средства на основе нативного витамина D и кальция, а также
активные метаболиты витамина D – альфакальцидол и
кальцитриол.

Альфакальцидол в лечении остеопороза.

Перечисленные препараты используются в комбинированной терапии, в составе различных схем. Стоит отметить, препараты на основе активных метаболитов витамина D, в частности альфакальцидола, демонстрируют большую клиническую эффективность в лечении остеопороза, чем препараты нативного витамина, при сравнимом профиле безопасности, в отношении:

  • Увеличения
    минеральной плотности кости.
  • Сокращения
    числа переломов.
  • Сокращения
    числа падений.

Более высокая эффективность обусловлена
особенностями трансформации препарата в организме: у альфакальцидола
отсутствует этап метаболизма , протекающий в почках. Поэтому даже у пациентов,
у которых нарушено усвоение или преобразование нативного витамина D
в активный, при пероральном приеме альфакальцидола в организме оказывается
необходимое количество активного вещества, которое обеспечивает лечебный
эффект.

Альфакальцидол принимается под врачебным
контролем, терапевтическая доза препарата в соответствии с Клиническими рекомендациями
Российской ассоциации эндокринологов составляет 0,5-1 мкг (при нормальных
показателях фосфорно-кальциевого обмена), возможен прием 1 раз в сутки. Длительность
курса – от 2-3 месяцев до года.

Эффективность такой терапии определяется, прежде всего, грамотными назначениями врача и ответственным поведением пациента – приверженностью лекарственной терапии и соблюдением медицинских рекомендаций.

Обратите внимание! Информация предоставлена исключительно в ознакомительных целях. Необходима консультация врача.

Будьте здоровы!

Подписаться на блог по эл. почте

budtezzdorovy.ru

Кальциевый обмен

Средства, влияющие на обмен кальция и метаболизм костной ткани

В ранних изданиях основой упор в этой главе делался на гормональных механизмах поддержания постоянной концентрации кальция в крови, их нарушениях и способах коррекции этих нарушений. Однако за последние годы структура заболеваемости, связанной с нарушениями кальциевого обмена, существенно изменилась. Первичный гиперпаратиреоз диагностируется чаще, чем раньше, но обычно его симптомы слабо выражены, и он не всегда требует лечения. На первый же план выступили нарушения метаболизма костной ткани, а именно — остеопороз. Переломы, риск которых у больных остеопорозом резко повышен, особенно переломы шейки бедренной кости, стали важнейшей причиной инвалидности и смерти, а также увеличения медицинских расходов в развитых странах. Сегодня накоплено множество данных о возрастной динамике массы костной ткани и о роли генетических факторов, питания, физической активности и половых гормонов в метаболизме костей. Установлено, что любые факторы, способствующие возрастному уменьшению массы костной ткани, в конечном счете действуют через один механизм — нарушение процессов ее обновления.

Кость позвонка человека, больного остеопорозом. Сканирующий электронный микроскоп

Становится все более очевидным, что регулярные физические упражнения, достаточное потребление кальция (с пищевыми продуктами или в виде специальных добавок) и своевременная заместительная терапия эстрогенами тормозят обновление костной ткани, замедляют ее потерю и снижают риск переломов, то есть служат эффективным способом профилактики остеопороза. Что же касается лечения остеопороза, то оно и по сей день остается крайне трудной задачей. Эстрогены, кальций и другие лекарственные средства (например, дифосфонаты) тормозят резорбцию костей, но не стимулируют остеогенез и поэтому не решают проблему восстановления массы костной ткани. Более того, поскольку резорбция костей и остеогенез — два тесно связанных друг с другом процесса, обеспечивающих обновление костной ткани, подавление резорбции приводит к замедлению остеогенеза. Таким образом, важнейшая задача — получение лекарственных средств, способных увеличивать массу костной ткани. В качестве возможных средств для лечения остеопороза привлекают внимание аналоги ПТГ, витамин D и его производные, а также различные белки — регуляторы морфогенеза костей.

Сегодня известно, что витамин D влияет на дифференцировку клеток, причем это влияние не связанно с действием на обмен кальция. Кальцитриол — активная форма витамина D — оказался многообещающим средством лечения псориаза; проверяется действие этого препарата и при некоторых злокачественных новообразованиях. Лечебному применению кальцитриола препятствует влияние последнего на концентрацию кальция в крови, но сейчас появляются аналоги витамина D, не оказывающие такого действия. Это открывает новые возможности для применения препаратов витамина D при разных заболеваниях — от первичного и вторичного гиперпаратиреоза до злокачественных новообразований, в том числе лейкозов.

Кальций

Кальций — основной внеклеточный двухвалентный катион. В организме здоровых мужчин и женщин содержится соответственно около 1300 и 1000 г кальция, из которых более 99% — в костях. Небольшие количества кальция присутствуют в плазме и межклеточной жидкости и еще меньшие — в клетках, где в покое концентрация ионизированного кальция составляет примерно 0,1 мкмоль/л. Под влиянием химических, электрических или механических стимулов кальций входит в клетки, и его внутриклеточная концентрация достигает 1 мкмоль/л. При этом он взаимодействует со специфическими кальцийсвязывающими белками, которые активируют множество внутриклеточных процессов. Главный кальцийсвязываюший белок — кальмодулин. Это высококонсервативный белок, каждый моль которого связывает 4 моля кальция. Ионы кальция необходимы для возбуждения нейронов, выделения медиаторов, мышечного сокращения, поддержания структуры мембран, свертывания крови и многих других физиологических реакций. Кроме того, кальций выполняет роль второго посредника многих гормонов, медиаторов и пр.

Осуществление всех этих разнообразных функций возможно лишь при определенной концентрации ионизированного кальция. В плазме человека концентрация кальция составляет 8,5—10,4 мг% (2,1—2,6 ммоль/л). Примерно 45% этого количества связано с белками (главным образом с альбумином) и 10% образует комплексы с анионами буферных систем (цитратом и фосфатами). Остальное приходится на долю ионизированного кальция, который и обладает физиологической активностью. Именно уменьшение концентрации ионизированного кальция вызывает симптомы гипокальциемии. Для того чтобы по общей концентрации кальция в плазме судить о концентрации ионизированного кальция, необходимо знать концентрацию белка. Здесь помогает следующее приблизительное правило: отклонение концентрации альбумина в плазме на 1 г% (норма — 4 г%) должно сопровождаться изменением общей концентрации кальция на 0,8 мг%.

Концентрация кальция в крови находится под строгим гормональным контролем. Гормоны влияют на его всасывание в кишечнике и выделение почками, а также регулируют поступление в кровь кальция, запасенного в костях. Запасы кальция. Более 99% всего кальция в организме содержится в костях в кристаллической форме, напоминающей минерал гидроксиапатит Са|0(РО4)6(ОН)2. Минеральное вещество костей содержит и другие ионы, в том числе натрий, калий, магний и фтор. Количество кальция в костях зависит от соотношения между резорбцией и остеогенезом — двух сопряженных процессов постоянного обновления костной ткани (см. ниже). Кроме того, в костях имеется лабильная фракция кальция, из которой он легко выходит в межклеточную жидкость костей, а из нее — в кровь. На скорость всех этих процессов влияют лекарственные средства, гормоны, витамины и другие факторы.

Всасывание и экскреция кальция

Жители США примерно 75% кальция, поступающего с пищей, получают с молоком и молочными продуктами. Суточная потребность в кальции у подростков составляет 1300 мг, у лиц до 24 лет — 1000 мг, у мужчин и женщин старше 50 лет — 1200мг(см. часть XIII, «Введение») (Institute of Medicine, 1997). В то же время медиана потребления кальция мальчиками и девочками в возрасте 9 лет и старше составляет соответственно 865 и 625 мг/сут, а у женщин после 50 лет она постепенно снижается до 517 мг/сут (Institute of Medicine, 1997).

На рис. 62.1 Рисунок 62.1. Обмен кальция. Приведены приблизительные величины суточных потоков кальция. приведена схема обмена кальция. Кальций поступает в организм только из кишечника. В ЖКТ он усваивается лишь частично. Всасывание кальция обеспечивается двумя механизмами. В проксимальном отделе двенадцатиперстной кишки происходит активный витамин-Э-зависимый транспорт кальция. Кроме того, большое количество кальция всасывается путем облегченной диффузии по всей длине тонкой кишки. Обязательные потери кальция через кишечник составляют примерно 150 мг/сут; это количество содержится в секрете слизистой, желчи и слущивающихся клетках кишечника.

Усвояемость кальция обратно пропорциональна его потреблению: при низком содержании в пище доля всасываемого кальция возрастает, отчасти вследствие усиления активации витамина D. С возрастом эта компенсаторная реакция существенно ослабевает. Некоторые лекарственные средства (например, глюкокортикоиды и фенитоин) угнетают всасывание кальция. Определенные присутствующие в пище соединения (например, фитиновая и щавелевая кислоты) препятствуют всасыванию кальция, образуя с ним нерастворимые комплексы. Усвояемость кальция падает и при заболеваниях, сопровождающихся стеатореей, поносом или хроническим нарушением всасывания.

Экскреция кальция с мочой зависит от соотношения его клубочковой фильтрации и канальцевой реабсорбции. В сутки фильтруется примерно 9 г кальция, и более 98% этого количества реабсорбируется. Реабсорбция кальция регулируется ПТГ, но на нее влияют также количество фильтруемого натрия, присутствие нереабсорби-руемых анионов и диуретики. Экскреция кальция с мочой непосредственно связана с потреблением (а, соответственно, и с экскрецией) натрия. Петлевые диуретики увеличивают экскрецию кальция. Напротив, тиазидные диуретики обладают уникальной способностью нарушать связь между экскрецией натрия и кальция, приводя к снижению экскреции кальция (Lemann et al., 1985). Потребление белка также влияет на экскрецию кальция с мочой, что связано, вероятно, с действием серосодержащих аминокислот на функцию почечных канальцев. У здоровых людей содержание кальция в моче лишь в слабой степени зависит от его количества в пище. Во время лактации значительные количества кальция экскре-тируются с молоком. Небольшое количество этого элемента теряется с потом.

Обновление костной ткани

Сразу же после образования костной ткани в ней начинается непрерывный процесс обновления (резорбции и остеогенеза), который продолжается в течение всей жизни. После прекращения линейного роста, когда масса костной ткани достигает максимума, дальнейшие ее изменения в конечном счете определяются именно динамикой процессов обновления. Эти процессы независимо протекают в огромном количестве отдельных участков — единиц костного обновления (рис. 62.2) Рисунок 62.2. Цикл обновления костной ткани.. Обновление происходит на костной поверхности, примерно 90% которой в норме неактивно и покрыто тонкой клеточной выстилкой. В ответ на физические или биохимические сигналы костномозговые клетки-предшественники перемещаются к поверхности кости и, сливаясь друг с другом, превращаются в характерные многоядерные остеокласты; последние резорбируют расположенный под ними костный слой, образуя в нем углубления.

Образование остеокластов регулируется цитокинами (например, М-КСФ, ИЛ-1, ИЛ-6, фактором дифференцировки остеокластов), которые вырабатываются остеобластами. Недавние исследования проливают свет на механизмы этого процесса (Suda et al., 1999). Белок, продукция которого необходима для образования активных остеокластов, получил название RANK (Receptor for Activating NFkB“- рецептор, активирующий фактор транскрипции NFkB). Естественным лигандом этого рецептора служит фактор дифференцировки остеокластов (называемый также RANK-лигандом), расположенный на мембране остеобластов. Взаимодействуя с белком RANK, фактор дифференцировки остеокластов индуцирует созревание остеокластов. Действительно, антитела к этому фактору предотвращают усиливающее резорбцию действие многих регуляторов обновления костной ткани (Yasuda et al., 1998). Фактор дифференцировки остеокластов не только запускает дифференцировку предшественников остеокластов, но и активирует зрелые остеокласты (Jimi et al., 1999). Ц Остеобласты вырабатывают также растворимый ингибитор, называемый остеопротегерином, который выступает в роли ложного рецептора для фактора дифференцировки остеокластов. В условиях, способствующих усилению резорбции костной ткани (например, при дефиците эстрогенов), выработка остеопротегерина угнетается, фактор дифференцировки остеокластов свободно взаимодействует с белком RANK и образование остеокластов усиливается. При восстановлении уровня эстрогенов выработка остеопротегерина увеличивается и он препятствует связыванию фактора дифференцировки остеокластов с рецептором.

В результате резорбции в компактном веществе кости образуются туннели в каналах остеонов, а в губчатом веществе — неровные участки поверхности, носящие название резорбцион-ных (гаушиповых) лакун. По окончании резорбции остается полость глубиной около 60 мкм, граничащая в своей самой глубокой части с линией склеивания (областью рыхло организованных коллагеновых волокон). По завершении стадии резорбции на дно полости поступают преостеобласты, образующиеся из клеток стромы костного мозга. Преостеобласты приобретают характерные черты остеобластов и начинают восстанавливать резорбированную кость, образуя новые компоненты органического матриксаколлаген, остеокальцин и другие белки. Как только слой новообразованного органического матрикса достигает примерно 20 мкм, начинается его минерализация. Весь цикл обновления в норме занимает около 6 мес.

Если остеогенез количественно соответствует резорбции то обновление не приводит к изменению массы ткани. Однако в силу недостаточной эффективности обновления после каждого его цикла сохраняется небольшой дефицит массы. С годами такой дефицит увеличивается, чем и объясняется известное уменьшение массы костной ткани, начинающееся вскоре после прекращения роста. Изменение скорости обновления — это общий конечный механизм влияния различных стимулов (недостаточного питания, гормонов, лекарственных средств и т. п.) на состояние костей. Общая скорость обновления костной ткани зависит от динамики отдельных составляющих этого процесса. Гормональные изменения часто приводят к активации обновления костной ткани или увеличению количества единиц костного обновления. Это происходит, например, при тиреотоксикозе, гиперпаратиреозе и гипервитаминозе D. Другие факторы в частности высокие дозы глюкокортикоидов и этанол, нарушают функцию остеобластов. Наконец, дефицит эстрогенов, по-видимому, усиливает активность остеокластов (Marcus 1987; Dempster, 1992).

В каждый момент времени существует некоторый дефицит массы костной ткани, который определяется еще не заполненными очагами резорбции. В ответ на любой стимул, изменяющий скорость появления новых единиц костного обновления, этот дефицит увеличивается или уменьшается, пока не установится новое равновесие между резорбцией и остеогенезом.

Читайте основную статью: Физиология восстановления костной ткани

Физиологические эффекты кальция

Нервы и мышцы

Умеренное повышение концентрации кальция во внеклеточной жидкости может и не сопровождаться клиническими признаками нарушения функции нервной и мышечной систем. Однако при выраженной гиперкальциемии возбудимость нервов и мышц снижается, что приводит к развитию мышечной слабости, сонливости и даже к коме. Напротив, умеренное снижение концентрации кальция повышает возбудимость, приводя к появлению симптомов Хвостека и Труссо,тетанических судорог и ларингоспазма. Считается, что поступление Са в клетки осуществляется: 1) путем облегченной диффузии (с помощью переносчика), 2) за счет Na+/CaJ+-o6MeHa, 3) через каналы. Проницаемость последних регулируется гормонами и медиаторами, а во многих клетках эти каналы являются потенциалзависимыми. В печени и скелетных мышцах внутриклеточный кальций обратимо поглощается соответственно эндоплазматическим и саркоплазматическим ретикулумом.

Ионы кальция играют важную роль в электромеханическом сопряжении. Потенциал действия вызывает высвобождение кальция из саркоплазматического ретикулума мышечной клетки. Освобожденный кальций связывается с тропонином, снимая блокирующее влияние тропомиозина на взаимодействие актина с миозином, и тем самым активирует процесс сокращения. Когда кальций вновь поглощается саркоплазматическим ретикулумом, восстанавливается блокирующее действие тропомиозина и мышца расслабляется.

Ионы кальция необходимы и для экзоцитоза, поэтому они играют важную роль в сопряжении стимуляции с секрецией в большинстве экзокринных и эндокринных желез. Секреция катехоламинов мозговым веществом надпочечников, выделение медиаторов в синапсах и высвобождение некоторых других биологически активных веществ (например, гистамина тучными клетками) — все эти процессы требуют присутствия кальция. Сердечно-сосудистая система. Ионы кальция играют важнейшую роль в электромеханическом сопряжении в сердечной мышце, а также в проведении электрических импульсов по определенным участкам сердца, в частности в АВ-узле. Деполяризация волокон сердечной мышцы открывает потенциалзависимые кальциевые каналы (так называемые медленные кальциевые каналы), через которые во время плато потенциала действия кальций поступает внутрь клетки. Локальное повышение концентрации кальция вызывает открывание кальциевых каналов саркоплазматического ретикулума, что еще больше увеличивает концентрацию кальция в цитоплазме и приводит к сокращению. В некоторых клетках, например в клетках АВ-узла, потенциал действия почти полностью обеспечивается за счет поступления кальция через медленные кальциевые каналы.

В гладких мышцах, в том числе в гладких мышцах сосудов, кальций обеспечивает сокращение и часто создает существенную часть деполяризующего тока. Поэтому антагонисты кальция оказывают сильное влияние на сократимость миокарда и гладких мышц сосудов, равно как и на проведение импульсов в сердце. Эти препараты занимают важное место среди антиангинальных, антиаритмических и гипотензивных средств. Прочие эффекты. Ионы кальция поддерживают целость слизистых, участвуют в адгезии клеток и обеспечивают функции клеточных мембран. Кальций играет важную роль в механизмах свертывания крови, хотя и не применяется в качестве лечебного средства при нарушениях свертывания. Кальция хлорид оказывает закисляющее действие на мочу (хотя соли аммония в этом отношении гораздо эффективнее) и способствует диурезу.

Читайте также

sportguardian.ru

Фосфорно-кальциевый обмен: лабораторная диагностика нарушений

называется регуляция баланса в организме таких жизненно важных элементов как кальций и фосфор с помощью биохимических реакций. 98% кальция и 83% фосфора содержит костная ткань скелета человека, в циркулирующей крови находится остальное количество. В поддерживании равновесия этих веществ в человеческом организме принимают участие:

Типовыми нарушениями баланса кальция и фосфора считают:

1. Гиперкальциемию (концентрацию в крови кальция >3,1 ммоль/л), способствующей формированию камней в мочевом пузыре и почках, снижению возбудимости нервных и мышечных волокон. Проявляется жаждой, запорами, задержкой роста, артериальной гипертензией, усилением сегментарных рефлексов. Развитию патологического состояния способствуют:

  • гиперфункция паращитовидных желез;
  • язвенная болезнь желудка;
  • избыток витамина Д;
  • гипертиреоз;
  • синдром гиперкортицизма;
  • злокачественные новообразования;
  • чрезмерное употребление молочных продуктов;
  • щелочная диета.

2. Гипокальциемию (уровень кальция

  • гипофункции паращитовидных желез;
  • повышения секреции тиреокальцитонина;
  • снижения всасывания кальция в тонкой кишке;
  • инфузионной терапии.

3. Гипофосфатемию (содержание фосфора в крови

4. Гиперфосфатемию (фосфор >1,44 ммоль/л), возникающую при уменьшении фосфатов вследствие гипофункции ПЖ, поражение почечных клубочков.

При нарушениях баланса кальция и фосфора человеческий организм «включает» компенсаторные биологические механизмы, которые направлены на нормализацию минерального равновесия: в циркулирующую кровь элементы поступают сначала из пассивной составляющей опорно-двигательной системы (осевого скелета), а затем из остальной костной ткани. Это состояние приводит к остеопатической дисфункции.

Фосфорно-кальциевый дисбаланс в человеческом организме сопровождается развитием патологического состояния — остеопороза, которое характеризуется перестройкой микроструктур остеоцитов и снижением массы костной ткани, приводящих к повышению ломкости костей. В ряде случаев процесс протекает без характерных клинических признаков и первым проявлением патологии являются болевые ощущения в костях и переломы. Задачи клинико-лабораторной диагностики заключаются в:

  • выявлении наличия хронического системного заболевания костной ткани;
  • определении причин его возникновения;
  • оценивания метаболической активности;
  • предупреждении развития осложнений.

Для осуществления этих целей современные лабораторные методики включают полный спектр необходимых биохимических исследований:

  • Щелочной фосфатазы — маркера активности клеток костной ткани.
  • Фосфатазы кислой — фермента, ускоряющего распад молекул фосфорной кислоты.
  • Остеокальцина (костного глутаминового белка) — маркера формирования остеобластов.
  • N-терминального пропептида проколлагена I типа — маркера формирования костной матрикса.
  • Кальций-регулирующих гормонов.
  • Пиридинолина и деоксипиридинолина — производных поперечных коллагеновых волокон, показателя костного метаболизма.

medcentr-endomedlab.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о