Содержание

от светового микроскопа к гематологическим анализаторам / Lab4U corporate blog / Habr


Общий клинический анализ крови – это самый распространенный диагностический тест, который назначает пациенту врач. За последние десятилетия технология этого рутинного, но очень информативного исследования проделала колоссальный рывок – она стала автоматической. В помощь врачу лабораторной диагностики, орудием труда которого был обычный световой микроскоп, пришли высокотехнологичные автоматические гематологические анализаторы.

В этом посте мы расскажем, что именно происходит внутри «умной машины», видящей нашу кровь насквозь, и почему ей следует верить. Мы будем рассматривать физику процессов на примере гематологического анализатора UniCel DxH800 мирового бренда Beckman Coulter. Именно на этом оборудовании выполняются исследования, заказанные в сервисе лабораторной диагностики LAB4U.RU. Но для того, чтобы понять технологию автоматического анализа крови, мы разберемся с тем, что видели врачи-лаборанты под микроскопом и как они интерпретировали эту информацию.

Параметры анализа крови


Итак, в крови содержится три вида клеток:
  • лейкоциты, обеспечивающие иммунную защиту;
  • тромбоциты, отвечающие за свертываемость крови;
  • эритроциты, осуществляющие транспорт кислорода и углекислого газа.

Эти клетки находятся в крови в совершенно определенных количествах. Их обуславливают возраст человека и состояние его здоровья. В зависимости от условий, в которых находится организм, костный мозг производит столько клеток, сколько их требуется организму. Поэтому, зная количество определенного вида клеток крови и их форму, размер и другие качественные характеристики, можно уверенно судить о состоянии и текущих потребностях организма. Именно эти ключевые параметры – количество клеток каждого вида, их внешний вид и качественные характеристики – составляют общий клинический анализ крови.
При проведении общего анализа крови производят подсчет количества эритроцитов, тромбоцитов и лейкоцитов. С лейкоцитами сложнее: их несколько видов, и каждый вид выполняет свою функцию. Выделяют 5 разных видов лейкоцитов:
  1. нейтрофилы, нейтрализующие в основном бактерии;
  2. эозинофилы, нейтрализующие иммунные комплексы антиген-антитело;
  3. базофилы, участвующие в аллергических реакциях;
  4. моноциты – главные макрофаги и утилизаторы;
  5. лимфоциты, обеспечивающие общий и местный иммунитет.

В свою очередь, нейтрофилы по степени зрелости разделяют на:
  • палочкоядерные,
  • сегментоядерные,
  • миелоциты,
  • метамиелоциты.

Процент каждого вида лейкоцитов в их общем объеме называют лейкоцитарной формулой, которая имеет важное диагностическое значение. Например, чем более выражен бактериальный воспалительный процесс, тем больше нейтрофилов в лейкоцитарной формуле. Наличие нейтрофилов разной степени зрелости говорит о тяжести бактериальной инфекции. Чем острее процесс, тем больше в крови палочкоядерных нейтрофилов. Появление в крови метамиелоцитов и миелоцитов говорит о крайне тяжелой бактериальной инфекции. Для вирусных заболеваний характерно увеличение лимфоцитов, при аллергических реакциях – увеличение эозинофиллов.

Помимо количественных показателей, крайне важна морфология клеток. Изменение их обычной формы и размеров также свидетельствует о наличии определенных патологических процессов в организме.

Важный и наиболее известный показатель – количество в крови гемоглобина – сложного белка, обеспечивающего поступление кислорода к тканям и выведение углекислого газа. Концентрация гемоглобина в крови – главный показатель при диагностике анемий.

Еще один из важных параметров – это скорость оседания эритроцитов (СОЭ). При воспалительных процессах у эритроцитов появляется свойство слипаться друг с другом, образуя небольшие сгустки. Обладая большей массой, слипшиеся эритроциты под действием силы тяжести оседают быстрее, чем одиночные клетки. Изменение скорости их оседания в мм/ч является простым индикатором воспалительных процессов в организме.

Как было: скарификатор, пробирки и микроскоп


Забор крови
Вспомним, как раньше сдавали кровь: болезненный прокол подушечки скарификатором, бесконечные стеклянные трубочки, в которые собирали драгоценные капли выжатой крови. Как лаборант одним стёклышком проводил по другому, где находилась капля крови, царапая на стекле номер простым карандашом. И бесконечные пробирки с разными жидкостями. Сейчас это уже кажется какой-то алхимией.

Кровь брали именно из безымянного пальца, на что были вполне серьезные причины: анатомия этого пальца такова, что его травмирование дает минимальную угрозу сепсиса в случае инфицирования ранки. Забор крови из вены считался куда более опасным. Поэтому анализ венозной крови не был рутинным, а назначался по необходимости, и в основном в стационарах.

Стоит отметить, что уже на этапе забора начинались значительные погрешности. Например, разная толщина кожи дает разную глубину укола, вместе с кровью в пробирку попадала тканевая жидкость – отсюда изменение концентрации крови, кроме того, при давлении на палец клетки крови могли разрушаться.

Помните ряд пробирок, куда помещали собранную из пальца кровь? Для подсчета разных клеток действительно нужны были разные пробирки. Для эритроцитов – с физраствором, для лейкоцитов – с раствором уксусной кислоты, где эритроциты растворялись, для определения гемоглобина – с раствором соляной кислоты. Отдельный капилляр был для определения СОЭ. И на последнем этапе делался мазок на стекле для последующего подсчета лейкоцитарной формулы.

Анализ крови под микроскопом


Для подсчета клеток под микроскопом в лабораторной практике использовался специальный оптический прибор, предложенный еще в ХIX веке русским врачом, именем которого этот прибор и был назван – камера Горяева. Она позволяла определить количество клеток в заданном микрообъеме жидкости и представляла собой толстое предметное стекло с прямоугольным углублением (камерой). На нее была нанесена микроскопическая сетка. Сверху камера Горяева накрывалась тонким покровным стеклом.

Эта сетка состояла из 225 больших квадратов, 25 из которых были разделены на 16 малых квадратов. Эритроциты считались в маленьких исчерченных квадратах, расположенных по диагонали камеры Горяева. Причем существовало определенное правило подсчета клеток, которые лежат на границе квадрата. Расчет числа эритроцитов в литре крови осуществлялся по формуле, исходя из разведения крови и количества квадратов в сетке. После математических сокращений достаточно было посчитанное количество клеток в камере умножить на 10 в 12-й степени и внести в бланк анализа.

Лейкоциты считали здесь же, но использовали уже большие квадраты сетки, поскольку лейкоциты в тысячу раз больше, чем эритроциты. После подсчета лейкоцитов их количество умножали на 10 в 9-й степени и вносили в бланк. У опытного лаборанта подсчет клеток занимал в среднем 3-5 мин.

Методы подсчета тромбоцитов в камере Горяева были очень трудоемки из-за малой величины этого вида клеток. Оценивать их количество приходилось только на основе окрашенного мазка крови, и сам процесс был тоже весьма трудоемким. Поэтому, как правило, количество тромбоцитов рассчитывали только по специальному запросу врача.

Лейкоцитарную формулу, то есть процентный состав лейкоцитов каждого вида в общем их количестве мог определять только врач – по результатам изучения мазков крови на стеклах.


Визуально определяя находящиеся в поле зрения различные виды лейкоцитов по форме их ядра, врач считал клетки каждого вида и общее их количество. Насчитав 100 в совокупности, он получал требуемое процентное соотношение каждого вида клеток. Для упрощения подсчета использовались специальные счетчики с отдельными клавишами для каждого вида клеток.

Примечательно, что такой важный параметр, как гемоглобин, определялся лаборантом визуально (!) по цвету гемолизированной крови в пробирке с соляной кислотой. Метод был основан на превращении гемоглобина в солянокислый гематин коричневого цвета, интенсивность окраски которого пропорциональна содержанию гемоглобина. Полученный раствор солянокислого гематина разводили водой до цвета стандарта, соответствующего известной концентрации гемоглобина. В общем, прошлый век

Как стало: вакуумные контейнеры и гематологические анализаторы


Начнем с того, что сейчас полностью поменялась технология забора крови. На смену скарификаторам и стеклянным капиллярам с пробирками пришли вакуумные контейнеры. Использующиеся теперь системы забора крови малотравматичны, процесс полностью унифицирован, что значительно сократило процент погрешностей на этом этапе. Вакуумные пробирки, содержащие консерванты и антикоагулянты, позволяют сохранять и транспортировать кровь от точки забора до лаборатории. Именно благодаря появлению новой технологии стало возможным сдавать анализы максимально удобно – в любое время, в любом месте.
На первый взгляд, автоматизировать такой сложный процесс, как идентификация клеток крови и их подсчет, кажется невозможно. Но, как обычно, все гениальное просто. В основе автоматического анализа крови лежат фундаментальные физические законы. Технология автоматического подсчета клеток была запатентована в далеком 1953 году американцами Джозефом и Уолессом Культерами. Именно их имя стоит в название мирового бренда гематологического оборудования Bеckman&Coulter.

Подсчет клеток


Апертурно-импедансный метод (метод Культера или кондуктометрический метод) основан на подсчете количества и оценке характера импульсов, возникающих при прохождении клетки через отверстие малого диаметра (апертуру), по обе стороны которого расположены два электрода. При прохождении клетки через канал, заполненный электролитом, возрастает сопротивление электрическому току. Каждое прохождение клетки сопровождается появлением электрического импульса. Чтобы выяснить, какова концентрация клеток, необходимо пропустить через канал определенный объем пробы и сосчитать количество появившихся импульсов. Единственное ограничение – концентрация пробы должна обеспечивать прохождение через апертуру только одной клетки в каждый момент времени.
За прошедшие более 60 лет технология автоматического гематологического анализа прошла большой путь. Вначале это были простые счетчики клеток, определяющие 8-10 параметров: количество эритроцитов (RBC), количество лейкоцитов (WBC), гемоглобин (Hb) и несколько расчетных. Такими были анализаторы первого класса.

Второй класс анализаторов определял уже до 20 различных параметров крови. Они существенно выше по уровню в дифференциации лейкоцитов и способны выделять популяции гранулоцитов (эозинофилы + нейтрофилы + базофилы), лимфоцитов и интегральной популяции средних клеток, куда относились моноциты, эозинофилы, базофилы и плазматические клетки. Такая дифференциация лейкоцитов успешно использовалась при обследовании практически здоровых людей.

Самыми технологичными и инновационными анализаторами на сегодняшний день являются машины третьего класса, определяющие до сотни различных параметров, проводящие развернутое дифференцирование клеток, в том числе по степени зрелости, анализирующие их морфологию и сигнализирующие врачу-лаборанту об обнаружении патологии. Машины третьего класса, как правило, снабжены еще и автоматическими системами приготовления мазков (включая их окраску) и вывода изображения на экран монитора. К таким передовым гематологическим системам относятся оборудование BeckmanCoulter, в частности система клеточного анализа UniCel DxH 800.


Современные аппараты BeckmanCoulter используют метод многопараметрической проточной цитометрии на основе запатентованной технологии VCS (Volume-Conductivity-Scatter). VCS-технология подразумевает оценку объема клетки, ее электропроводимость и светорассеяние.

Первый параметр – объем клетки – измеряется с использованием принципа Культера на основе оценки сопротивления при прохождении клеткой апертуры при постоянном токе. Величину и плотность клеточного ядра, а также ее внутренний состав определяют с помощью измерения ее электропроводности в переменном токе высокой частоты. Рассеяние лазерного света под разными углами позволяет получить информацию о структуре клеточной поверхности, гранулярности цитоплазмы и морфологии ядра клетки.

Полученные по трем каналам данные комбинируются и анализируются. В результате клетки распределяются по кластерам, включая разделение по степени зрелости эритроцитов и лейкоцитов (нейтрофилов). На основе полученных измерений этих трех размерностей определяется множество гематологических параметров – до 30 в диагностических целях, более 20 в исследовательских целях и более ста специфичных расчетных параметров для узкоспециализированных цитологических исследований. Данные визуализируются в 2D- и 3D-форматах. Врач-лаборант, работающий с гематологическим анализатором BackmanCoulter, видит результаты анализа на мониторе примерно в таком виде:


А далее принимает решение – надо ли их верифицировать или нет.

Стоит ли говорить, что информативность и точность современного автоматического анализа во много раз выше мануального? Производительность машин подобного класса – порядка сотни образцов в час при анализе тысяч клеток в образце. Вспомним, что при микроскопии мазка врачом анализировалось только 100 клеток!

Однако несмотря на эти впечатляющие результаты, именно микроскопия до сих пор пока остается «золотым стандартом» диагностики. В частности, при выявлении аппаратом патологической морфологии клеток образец анализируется под микроскопом вручную. При обследовании больных с гематологическими заболеваниями микроскопия окрашенного мазка крови проводится только вручную опытным врачом-гематологом. Именно так, вручную, дополнительно к автоматическому подсчету клеток, выполняется оценка лейкоцитарной формулы во всех детских анализах крови по заказам, сделанным с помощью лабораторного онлайн-сервиса LAB4U.RU.

Вместо резюме


Технологии автоматизированного гематологического анализа продолжают активно развиваться. По существу они уже заменили микроскопию при выполнении рутинных профилактических анализов, оставив ее для особо значимых ситуаций. Мы имеем в виду детские анализы, анализы людей, имеющих подтвержденные заболевания, особенно гематологические. Однако в обозримом будущем и на этом участке лабораторной диагностики врачи получат аппараты, способные самостоятельно выполнять морфологический анализ клеток с использованием нейронных сетей. Снизив нагрузку на врачей, они в то же время повысят требования к их квалификации, поскольку в зоне принятия решений человеком останутся только нетипичные и патологические состояния клеток.

Количество информативных параметров анализа крови, увеличившиеся многократно, поднимает требования к профессиональной квалификации и врача-клинициста, которому необходимо анализировать сочетания значений массы параметров в диагностических целях. На помощь врачам этого фронта идут экспертные системы, которые, используя данные анализатора, предоставляют рекомендации по дальнейшему обследованию пациента и выдают возможный диагноз. Такие системы уже представлены на лабораторном рынке. Но это уже тема отдельной статьи.

habr.com

Клетки крови человека под микроскопом. Строение клеток крови: эритроциты, лейкоциты и тромбоциты

Перейти к контенту Сердце человека, сайт о заболеваниях и методах лечения
  • Главная
  • Контакты

Поиск:

  • Болезни сердца
    • Давление и пульс
    • Диагностика
    • Профилактика и лечение
    • Аритмия
    • Брадикардия
    • ВСД
    • Инфаркт
    • Ишемическая болезнь
    • Ишемическая болезнь
    • Сердечная недостаточность
    • Порок сердца
    • Гипертензия
    • Гипертоническая болезнь
    • Стенокардия
    • Другое
  • Кровь
    • Лейкоз
    • Диабет
    • Анемия
  • Аллергия
    • Антигистаминные препараты
    • Диета
  • Препараты
  • Анализы
    • Анализы крови
    • Кал
    • Анализ мочи
      • Болезни
      • Виды анализов
      • Сдача
      • Состав
      • Уринотерапия
      • Цвет и запах
  • Почки
    • Анатомия
    • Болезни мочевой системы
    • Болезни почек
    • Диагностика
    • Лечение
    • Надпочечники
    • Препараты
    • Холецистит
    • Цистит
  • Желчный пузырь
  • Болезни печени
    • Гепатит
    • Гепатоз
    • Цирроз
    • Диагностика
    • Желтуха
    • Паразиты
    • Холестерин
Главная » Кровь Рубрика: Кровь

kardiobit.ru

Фото крови человека под микроскопом – Статьи на сайте Четыре глаза

Главная » Статьи и полезные материалы » Микроскопы » Статьи о микроскопах, микропрепаратах и исследованиях микромира » Кровь человека под микроскопом

Хотели ли вы когда-нибудь увидеть своими глазами, как выглядит кровь человека под микроскопом? Ведь это же одна из наиболее интересных тканей организма! Она состоит из множества клеток разных типов и выполняет жизненно важные функции: транспортную (переносит кислород по телу), защитную (специальные клетки устраняют вредоносные микроорганизмы) и гомеостатическую (поддерживает постоянство внутренней среды организма).

Чтобы вы смогли рассмотреть, как устроена кровь человека, микроскоп должен давать не менее 1000-кратного увеличения. Учитывайте это при его выборе.

Как выглядит кровь под микроскопом?

При большом увеличении можно увидеть все три типа клеток крови.

Эритроциты – красные тельца дисковидной формы, которые транспортируют кислород по телу человека. Диаметр – 7–10 мкм. Цвет этих клеток обусловлен содержанием в них гемоглобина – специального вещества, которое позволяет им переносить молекулы кислорода. Эти клетки наиболее многочисленны, поэтому, рассматривая кровь человека под микроскопом, их вы увидите в первую очередь.

Лейкоциты – клетки округлой формы размером от 7 до 20 мкм. Именно они и формируют иммунную систему, защищающую организм от болезнетворных вирусов, бактерий и грибков. Существует несколько разновидностей лейкоцитов: лимфоциты, моноциты, базофилы, нейтрофилы и эозинофилы.

Тромбоциты – плоские бесцветные клетки, отвечающие за свертываемость крови. У них наименьшие размеры – от 2 до 4 мкм, – поэтому подробно рассмотреть их можно только с помощью профессионального микроскопа.

Кровь под микроскопом – фото

Если у вас нет возможности приобрести микроскоп, вы можете увидеть многочисленные фото клеток крови в интернете. Многие из них сделаны с использованием профессиональной оптической и фототехники, поэтому очень детальны и дают возможность узнать все тонкости клеточного строения крови.

кровь под микроскопом, кровь под микроскопом фото, кровь человека микроскоп
Кровь человека под микроскопом, 150x

Но никакие фотографии не могут заменить настоящее изучение микропрепарата в микроскоп! И если вы – любитель постигать новое, задумайтесь о долгожданной покупке оптической техники и откройте для себя все тайны микромира, не видимого невооруженным глазом.

Если же вы хотите поэкспериментировать и сделать фото крови под микроскопом самостоятельно, для начала вам хватит даже смартфона или фотоаппарата начального уровня. С помощью адаптера вы сможете подсоединить гаджет к микроскопу и сделать красочные снимки.

4glaza.ru
Сентябрь 2017

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.


Смотрите также

Другие обзоры и статьи о микроскопах, микропрепаратах и микромире:

  • Видео! Микроскоп Levenhuk 870T: видеообзор (канал MAD SCIENCE, Youtube.com)
  • Видео! Микроскоп Levenhuk 870T: видео соленой воды (канал MAD SCIENCE, Youtube.com)
  • Медицинские микроскопы Levenhuk MED: обзорная статья на сайте levenhuk.ru
  • Видео! Портативный микроскоп Bresser National Geographic 20–40x и другие детские приборы линейки: видеообзор (канал «Татьяна Михеева», Youtube.com)
  • Книги знаний издательства Levenhuk Press: подробный обзор на сайте levenhuk.ru
  • Видео! Книга знаний в 2 томах. «Космос. Микромир»: видеопрезентация (канал LevenhukOnline, Youtube.ru)
  • Видео! Видео бактерий под микроскопом Levenhuk Rainbow 2L PLUS (канал «Микромир под микроскопом», Youtube.ru)
  • Обзор микроскопа Levenhuk Rainbow 50L PLUS на сайте levenhuk.ru
  • Видео! Подробный обзор серии детских микроскопов Levenhuk LabZZ M101 (канал Kent Channel TV, Youtube.ru)
  • Обзор набора оптической техники Levenhuk LabZZ MTВ3 (микроскоп, телескоп и бинокль) на сайте levenhuk.ru
  • Видео! Микроскоп Levenhuk DTX 90: распаковка и видеообзор цифрового микроскопа (канал Kent Channel TV, Youtube.ru)
  • Видео! Видеопрезентация увлекательной и красочной книги для детей «Невидимый мир» (канал LevenhukOnline, Youtube.ru)
  • Видео! Большой обзор биологического микроскопа Levenhuk 3S NG (канал Kent Channel TV, Youtube.ru)
  • Микроскопы Levenhuk Rainbow 2L PLUS
  • Видео! Микроскопы Levenhuk Rainbow и LabZZ (канал LevenhukOnline, Youtube.ru)
  • Микроскоп Levenhuk Rainbow 2L PLUS Lime\Лайм. Изучаем микромир
  • Выбираем лучший детский микроскоп
  • Видео! Микроскопы Levenhuk Rainbow 2L: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 2L PLUS: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 50L: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 50L PLUS: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскоп Levenhuk Rainbow D2L: видеообзор цифрового микроскопа (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскоп Levenhuk Rainbow D50L PLUS: видеообзор цифрового микроскопа (канал LevenhukOnline, Youtube.ru)
  • Обзор биологического микроскопа Levenhuk Rainbow 50L
  • Видео! Видеообзор школьных микроскопов Levenhuk Rainbow 2L и 2L PLUS: лучший подарок ребенку (канал KentChannelTV, Youtube.ru)
  • Видео! Как выбрать микроскоп: видеообзор для любителей микромира (канал LevenhukOnline, Youtube.ru)
  • Галерея фотографий! Наборы готовых микропрепаратов Levenhuk
  • Микроскопия: метод темного поля
  • Видео! «Один день инфузории-туфельки»: видео снято при помощи микроскопа Levenhuk 2L NG и цифровой камеры Levenhuk (канал LevenhukOnline, Youtube.ru)
  • Видео! Обзор микроскопа Levenhuk Rainbow 2L NG Azure на телеканале «Карусель» (канал LevenhukOnline, Youtube.ru)
  • Обзор микроскопа Levenhuk Фиксики Файер
  • Совместимость микроскопов Levenhuk с цифровыми камерами Levenhuk
  • Как работает микроскоп
  • Как настроить микроскоп
  • Как ухаживать за микроскопом
  • Типы микроскопов
  • Техника приготовления микропрепаратов
  • Галерея фотографий! Что можно увидеть в микроскопы Levenhuk Rainbow 50L, 50L PLUS, D50L PLUS
  • Сетка или шкала. Микроскоп и возможность проведения точных измерений
  • Обычные предметы под объективом микроскопа
  • Насекомые под микроскопом: фото с названиями
  • Инфузории под микроскопом
  • Изобретение микроскопа
  • Как выбрать микроскоп
  • Как выглядят лейкоциты под микроскопом
  • Что такое лазерный сканирующий микроскоп?
  • Микроскоп люминесцентный: цена высока, но оправданна
  • Микроскоп для пайки микросхем
  • Иммерсионная система микроскопа
  • Измерительный микроскоп
  • Микроскопы от самых больших профессиональных моделей до простых детских
  • Микроскоп профессиональный цифровой
  • Силовой микроскоп: для серьезных исследований и развлечений
  • Лечение зубов под микроскопом
  • Кровь человека под микроскопом
  • Галогенные лампы для микроскопов
  • Французские опыты – микроскопы и развивающие наборы от Bondibon
  • Наборы препаратов для микроскопа
  • Юстировка микроскопа
  • Микроскоп для ремонта электроники
  • Операционный микроскоп: цена, возможности, сферы применения
  • «Шкаловой микроскоп» – какой оптический прибор так называют?
  • Бородавка под микроскопом
  • Вирусы под микроскопом
  • Принцип работы темнопольного микроскопа
  • Покровные стекла для микроскопа – купить или нет?
  • Увеличение оптического микроскопа
  • Оптическая схема микроскопа
  • Схема просвечивающего электронного микроскопа
  • Устройство оптического микроскопа у теодолита
  • Грибок под микроскопом: фото и особенности исследования
  • Зачем нужна цифровая камера для микроскопа?
  • Предметный столик микроскопа – что это и зачем он нужен?
  • Микроскопы проходящего света
  • Органоиды, обнаруженные с помощью электронного микроскопа
  • Паук под микроскопом: фото и особенности изучения
  • Из чего состоит микроскоп?
  • Как выглядят волосы под микроскопом?
  • Глаз под микроскопом: фото насекомых
  • Микроскоп из веб-камеры своими руками
  • Микроскопы светлого поля
  • Механическая система микроскопа
  • Объектив и окуляр микроскопа
  • USB-микроскоп для компьютера
  • Универсальный микроскоп – существует ли такой?
  • Песок под микроскопом
  • Муравей через микроскоп: изучаем и фотографируем
  • Растительная клетка под световым микроскопом
  • Цифровой промышленный микроскоп
  • ДНК человека под микроскопом
  • Как сделать микроскоп в домашних условиях
  • Первые микроскопы
  • Микроскоп стерео: купить или нет?
  • Как выглядит раковая клетка под микроскопом?
  • Металлографический микроскоп: купить или не стоит?
  • Флуоресцентный микроскоп: цена и особенности
  • Что такое «ионный микроскоп»?
  • Грязь под микроскопом
  • Как выглядит клещ под микроскопом
  • Как выглядит червяк под микроскопом
  • Как выглядят дрожжи под микроскопом
  • Что можно увидеть в микроскоп?
  • Зачем нужны исследовательские микроскопы?
  • Бактерии под микроскопом: фото и особенности наблюдения
  • На что влияет апертура объектива микроскопа?
  • Аскариды под микроскопом: фото и особенности изучения
  • Как использовать микропрепараты для микроскопа
  • Изучаем ГОСТ: микроскопы, соответствующие стандартам
  • Микроскоп инструментальный – купить или нет?
  • Где купить отсчетный микроскоп и зачем он нужен?
  • Атом под электронным микроскопом
  • Как кусает комар под микроскопом
  • Как выглядит муха под микроскопом
  • Амеба: фото под микроскопом
  • Подкованная блоха под микроскопом
  • Вша под микроскопом
  • Плесень хлеба под микроскопом
  • Зубы под микроскопом: фото и особенности наблюдения
  • Снежинка под микроскопом
  • Бабочка под микроскопом: фото и особенности наблюдений
  • Самый мощный микроскоп – как выбрать правильно?
  • Рот пиявки под микроскопом
  • Мошка под микроскопом: челюсти и строение тела
  • Микробы на руках под микроскопом – как увидеть?
  • Вода под микроскопом
  • Как выглядит глист под микроскопом
  • Клетка под световым микроскопом
  • Клетка лука под микроскопом
  • Мозги под микроскопом
  • Кожа человека под микроскопом
  • Кристаллы под микроскопом
  • Основное преимущество световой микроскопии перед электронной
  • Конфокальная флуоресцентная микроскопия
  • Зондовый микроскоп
  • Принцип работы сканирующего зондового микроскопа
  • Почему трудно изготовить рентгеновский микроскоп?
  • Макровинт и микровинт микроскопа – что это такое?
  • Что такое тубус в микроскопе?
  • Главная плоскость поляризатора
  • На что влияет угол между главными плоскостями поляризатора и анализатора?
  • Назначение поляризатора и анализатора
  • Метод изучения – микроскопия на практике
  • Микроскопия осадка мочи: расшифровка
  • Анализ «Микроскопия мазка»
  • Сканирующая электронная микроскопия
  • Методы световой микроскопии
  • Оптическая микроскопия (световая)
  • Световая, люминесцентная, электронная микроскопия – разные методы исследований
  • Темнопольная микроскопия
  • Фазово-контрастная микроскопия
  • Поляризаторы естественного света
  • Шотландский физик, придумавший поляризатор
  • Механизм фокусировки в микроскопе
  • Что такое полевая диафрагма?

www.4glaza.ru

Строение клеток крови зависит от. Клетки крови человека и их функции

Кровь – это жидкая соединительная ткань красного цвета, которая все время находится в движении и выполняет много сложных и важных для организма функций. Она постоянно циркулирует в системе кровообращения и переносит необходимые для обменных процессов газы и растворенные в ней вещества.

Кровь состоит из плазмы и находящихся в ней в виде взвеси особых кровяных клеток. Плазма – это прозрачная жидкость желтоватого цвета, составляющая более половины всего объема крови. В ней находится три основных вида форменных элементов:
эритроциты – красные клетки, которые придают крови красный цвет за счет находящегося в них гемоглобина;
лейкоциты – белые клетки;
тромбоциты – кровяные пластинки.

Артериальная кровь, которая поступает из легких в сердце и затем разносится ко всем органам, обогащена кислородом и имеет ярко-алый цвет. После того как кровь отдаст кислород тканям, она по венам возвращается к сердцу. Лишенная кислорода, она становится более темной.

В кровеносной системе взрослого человека циркулирует примерно от 4 до 5 литров крови. Примерно 55% объема занимает плазма, остальное приходится на форменные элементы, при этом большую часть составляют эритроциты – более 90%.

Кровь – это вязкая субстанция. Вязкость зависит от количества находящихся в ней белков и эритроцитов. Это качество влияет на кровяное давление и скорость движения. Плотностью крови и характером движения форменных элементов обусловлена ее текучесть. Клетки крови двигаются по-разному. Они могут перемещаться группами или поодиночке. Эритроциты могут двигаться как по отдельности, так и целыми «стопками», как сложенные монеты, как правило, создают поток в центре сосуда. Белые клетки перемещаются поодиночке и обычно держатся около стенок.

Состав крови

Плазма – жидкая составляющая светло-желтого цвета, который обусловлен незначительным количеством желчного пигмента и других окрашенных частиц. Примерно на 90 % она состоит из воды и приблизительно на 10% из органических веществ и минералов, растворенных в ней. Ее состав не отличается постоянством и меняется в зависимости от принятой пищи, количества воды и солей. Состав растворенных в плазме веществ следующий:
органические – около 0,1% глюкозы, примерно 7% белков и около 2% жиров, аминокислот, молочной и мочевой кислоты и других;
минералы составляют 1% (анионы хлора, фосфора, серы, йода и катионы натрия, кальция, железа, магния, калия.

Белки плазмы принимают участие в обмене воды, распределяют ее между тканевой жидкостью и кровью, придают крови вязкость. Некоторые из белков являются антителами и обезвреживают чужеродных агентов. Важная роль отводится растворимому белку фибриногену. Он принимает участие в процессе свертывания крови, превращаясь под действием свертывающих факторов в нерастворимый фибрин.
Кроме этого, в плазме есть гормоны, которые вырабатываются железами внутренней секреции, и другие необходимые для деятельности систем организма биоактивные элементы. Плазма, лишенная фибриногена, называется сывороткой крови.


Эритроциты. Самые многочисленные клетки крови, составляющие порядка 44-48 % от ее объема. Они имеют вид дисков, двояковогнутых в центре, диаметром около 7,5 мкм. Форма клеток обеспечивает эффективность физиологических процессов. За счет вогнутости увеличивается площадь поверхности сторон эритроцита, что важно для обмена газами. Зрелые клетки не содержат ядер. Главная функция эритроцитов – доставка кислорода из легких в ткани организма.
Название их переводится с греческого как «красный». Своим цветом эритроциты обязаны очень сложному по строению белку гемоглобину, который способен связываться с кислородом. В составе гемоглобина – белковая часть, которая называется глобином, и небелковая (гем), содержащая железо. Именно благодаря железу гемоглобин может присоединять молекулы кислорода.

Эритроциты образуются в костном мозге. Срок их полного созревания составляет примерно пять дней. Продолжительность жизни красных клеток – около 120 дней. Разрушение эритроцитов происходит в селезенке и печени. Гемоглобин распадается на глобин и гем. Из гема высвобождаются ионы железа, возвращаются в костный мозг и идут на производство новых эритроцитов. Гем без железа преобразуется в желчный пигмент билирубин, который с желчью поступает в пищеварительный тракт.
Снижение уровня эритроцитов в крови приводит к такому состоянию, как анемия, или малокровие.


Лейкоциты - бесцветные клетки периферической крови, защищающие организм от внешних инфекций и патологически измененных собственных клеток. Белые тельца делятся на зернистые (гранулоциты) и незернистые (агранулоциты). К первым относятся нейтрофилы, базофилы, эозинофилы, которые отличают по реакции на разные красители. Ко вторым – моноциты и лимфоциты. Зернистые лейкоциты имеют гранулы в цитоплазме и ядро, состоящее из сегментов. Агранулоциты лишены зернистости, их ядро имеет обычно правильную округлую форму.

Гранулоциты образуются в костном мозге. После созревания, когда образуется зернистость и сегментоядерность, поступают в кровь, где передвигаются вдоль стенок, совершая амебоидные движения. Защищают организм преимущественно от бактерий, способны покидать сосуды и скапливаться в очагах инфекций.

Моноциты – крупные клетки, которые образуются в костном мозге, лимфоузлах, селезенке. Их главная функция – фагоцитоз. Лимфоциты – небольшие клетки, которые делятся на три вида (В-, Т, 0-лимфоциты), каждый из которых выполняет свою функцию. Эти клетки вырабатывают антитела, интерфероны, факторы активации макрофагов, убивают раковые клетки.


Тромбоциты - небольшие безъядерные бесц

overmedic.ru

Фотографии под микроскопом (29 фото)

Этот удивительный мир скрывает от нас много интересного и необычного.
Мы не можем рассмотреть глазом всяких паразитов и микроорганизмы.
Но благодаря микроскопу, мы можем увидеть мир с другой стороны.


Клетки рака легких

Клетка рака груди

Клетка рака кожи

Вольфия

Лепесток лютика

Лист клубники

Бактерии на человеческом языке

Сибиреязвенная бацилла

Личинка нематоды

Мушиная лапка

Глаза тарантула

Платяная вошь

Снег

Кишечные ворсинки

Сперматозоид и яйцеклетка

Зуб

Лимфоцит

Красные кровяные тельца

Кровь человека

Песчаник

Сухая губка

Порошок ксерокса

Лимфоцит

Икра омара

Присоски кальмара

Источник: podmikroskopom.ru

fishki.net

Фото лейкоцитов под микроскопом – Статьи на сайте Четыре глаза


Полезная информация

Главная » Статьи и полезные материалы » Микроскопы » Статьи о микроскопах, микропрепаратах и исследованиях микромира » Как выглядят лейкоциты под микроскопом

Лейкоциты – защитные клетки крови человека и животных. Они оберегают организм от патогенных микробов и предотвращают развитие патологических процессов. Лейкоциты в зависимости внешнего вида и выполняемым функциям подразделяются на подвиды. Одни уничтожают врагов, другие вырабатывают специальные антитела, третьи очищают кровь от «мусора» – погибших лейкоцитов и останков микробов. Если изучить лейкоциты под микроскопом, их состав и активность помогут диагностировать или исключить конкретное заболевание.

Лейкоциты под микроскопом: фото

Чтобы понять, на что похожи лейкоциты под микроскопом, посмотрите на фото ниже. Красные овальные клетки с темной точкой в центре – это эритроциты. Они переносят кислород и обеспечивают органы живого организма необходимой энергией. Рядом с ними можно заметить черные и фиолетовые пятна разной формы. Это и есть лейкоциты. В зависимости от возраста и выполняемых функций они выглядят немного по-разному. В норме в крови человека присутствует пять видов лейкоцитов: базофилы, эозинофилы, нейтрофилы, лимфоциты и моноциты.

лейкоциты под микроскопом, лейкоциты под микроскопом фото, лейкоциты в моче под микроскопом, как выглядит лейкоциты под микроскопом лейкоциты под микроскопом, лейкоциты под микроскопом фото, лейкоциты в моче под микроскопом, как выглядит лейкоциты под микроскопом

Изучение крови – одно из самых захватывающих направлений в микробиологии. Но не обязательно быть сотрудником клинической лаборатории, чтобы узнать, как выглядят лейкоциты под микроскопом. Резать себе палец тоже не нужно. Мазок крови – популярный готовый микропрепарат. Его включают практически во все наборы для любительских микроскопов. Для наблюдения эритроцитов хватит небольшого увеличения в 150х, а вот лейкоциты лучше рассматривать на кратности свыше 300х. Более мощный микроскоп покажет все многообразие иммунной системы живого организма и позволит детально рассмотреть строение эритроцита.

Однако иммунные клетки можно увидеть не только в мазке крови. Изучая лейкоциты в моче под микроскопом, врач может диагностировать ряд воспалительных заболеваний почек и мочевого пузыря. Именно поэтому при недомогании мы сдаем несколько анализов: защитные клетки преодолевают длинный путь и рассказывают врачу сложную историю заболеваний нашего организма.

Любопытно, что даже в здоровом организме количество лейкоцитов постоянно меняется. Исследования показали, что к вечеру и после приема пищи их становится больше. Небольшое повышение численности лейкоцитов заметно и после физического или нервного напряжения, при сильном изменении температуры окружающей среды, после приема некоторых лекарств. Хотя значительное изменение состава крови, чаще всего, связано все-таки с воспалительными процессами.

4glaza.ru
Август 2017

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.


Смотрите также

Другие обзоры и статьи о микроскопах, микропрепаратах и микромире:

  • Видео! Микроскоп Levenhuk 870T: видеообзор (канал MAD SCIENCE, Youtube.com)
  • Видео! Микроскоп Levenhuk 870T: видео соленой воды (канал MAD SCIENCE, Youtube.com)
  • Медицинские микроскопы Levenhuk MED: обзорная статья на сайте levenhuk.ru
  • Видео! Портативный микроскоп Bresser National Geographic 20–40x и другие детские приборы линейки: видеообзор (канал «Татьяна Михеева», Youtube.com)
  • Книги знаний издательства Levenhuk Press: подробный обзор на сайте levenhuk.ru
  • Видео! Книга знаний в 2 томах. «Космос. Микромир»: видеопрезентация (канал LevenhukOnline, Youtube.ru)
  • Видео! Видео бактерий под микроскопом Levenhuk Rainbow 2L PLUS (канал «Микромир под микроскопом», Youtube.ru)
  • Обзор микроскопа Levenhuk Rainbow 50L PLUS на сайте levenhuk.ru
  • Видео! Подробный обзор серии детских микроскопов Levenhuk LabZZ M101 (канал Kent Channel TV, Youtube.ru)
  • Обзор набора оптической техники Levenhuk LabZZ MTВ3 (микроскоп, телескоп и бинокль) на сайте levenhuk.ru
  • Видео! Микроскоп Levenhuk DTX 90: распаковка и видеообзор цифрового микроскопа (канал Kent Channel TV, Youtube.ru)
  • Видео! Видеопрезентация увлекательной и красочной книги для детей «Невидимый мир» (канал LevenhukOnline, Youtube.ru)
  • Видео! Большой обзор биологического микроскопа Levenhuk 3S NG (канал Kent Channel TV, Youtube.ru)
  • Микроскопы Levenhuk Rainbow 2L PLUS
  • Видео! Микроскопы Levenhuk Rainbow и LabZZ (канал LevenhukOnline, Youtube.ru)
  • Микроскоп Levenhuk Rainbow 2L PLUS Lime\Лайм. Изучаем микромир
  • Выбираем лучший детский микроскоп
  • Видео! Микроскопы Levenhuk Rainbow 2L: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 2L PLUS: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 50L: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 50L PLUS: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскоп Levenhuk Rainbow D2L: видеообзор цифрового микроскопа (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскоп Levenhuk Rainbow D50L PLUS: видеообзор цифрового микроскопа (канал LevenhukOnline, Youtube.ru)
  • Обзор биологического микроскопа Levenhuk Rainbow 50L
  • Видео! Видеообзор школьных микроскопов Levenhuk Rainbow 2L и 2L PLUS: лучший подарок ребенку (канал KentChannelTV, Youtube.ru)
  • Видео! Как выбрать микроскоп: видеообзор для любителей микромира (канал LevenhukOnline, Youtube.ru)
  • Галерея фотографий! Наборы готовых микропрепаратов Levenhuk
  • Микроскопия: метод темного поля
  • Видео! «Один день инфузории-туфельки»: видео снято при помощи микроскопа Levenhuk 2L NG и цифровой камеры Levenhuk (канал LevenhukOnline, Youtube.ru)
  • Видео! Обзор микроскопа Levenhuk Rainbow 2L NG Azure на телеканале «Карусель» (канал LevenhukOnline, Youtube.ru)
  • Обзор микроскопа Levenhuk Фиксики Файер
  • Совместимость микроскопов Levenhuk с цифровыми камерами Levenhuk
  • Как работает микроскоп
  • Как настроить микроскоп
  • Как ухаживать за микроскопом
  • Типы микроскопов
  • Техника приготовления микропрепаратов
  • Галерея фотографий! Что можно увидеть в микроскопы Levenhuk Rainbow 50L, 50L PLUS, D50L PLUS
  • Сетка или шкала. Микроскоп и возможность проведения точных измерений
  • Обычные предметы под объективом микроскопа
  • Насекомые под микроскопом: фото с названиями
  • Инфузории под микроскопом
  • Изобретение микроскопа
  • Как выбрать микроскоп
  • Как выглядят лейкоциты под микроскопом
  • Что такое лазерный сканирующий микроскоп?
  • Микроскоп люминесцентный: цена высока, но оправданна
  • Микроскоп для пайки микросхем
  • Иммерсионная система микроскопа
  • Измерительный микроскоп
  • Микроскопы от самых больших профессиональных моделей до простых детских
  • Микроскоп профессиональный цифровой
  • Силовой микроскоп: для серьезных исследований и развлечений
  • Лечение зубов под микроскопом
  • Кровь человека под микроскопом
  • Галогенные лампы для микроскопов
  • Французские опыты – микроскопы и развивающие наборы от Bondibon
  • Наборы препаратов для микроскопа
  • Юстировка микроскопа
  • Микроскоп для ремонта электроники
  • Операционный микроскоп: цена, возможности, сферы применения
  • «Шкаловой микроскоп» – какой оптический прибор так называют?
  • Бородавка под микроскопом
  • Вирусы под микроскопом
  • Принцип работы темнопольного микроскопа
  • Покровные стекла для микроскопа – купить или нет?
  • Увеличение оптического микроскопа
  • Оптическая схема микроскопа
  • Схема просвечивающего электронного микроскопа
  • Устройство оптического микроскопа у теодолита
  • Грибок под микроскопом: фото и особенности исследования
  • Зачем нужна цифровая камера для микроскопа?
  • Предметный столик микроскопа – что это и зачем он нужен?
  • Микроскопы проходящего света
  • Органоиды, обнаруженные с помощью электронного микроскопа
  • Паук под микроскопом: фото и особенности изучения
  • Из чего состоит микроскоп?
  • Как выглядят волосы под микроскопом?
  • Глаз под микроскопом: фото насекомых
  • Микроскоп из веб-камеры своими руками
  • Микроскопы светлого поля
  • Механическая система микроскопа
  • Объектив и окуляр микроскопа
  • USB-микроскоп для компьютера
  • Универсальный микроскоп – существует ли такой?
  • Песок под микроскопом
  • Муравей через микроскоп: изучаем и фотографируем
  • Растительная клетка под световым микроскопом
  • Цифровой промышленный микроскоп
  • ДНК человека под микроскопом
  • Как сделать микроскоп в домашних условиях
  • Первые микроскопы
  • Микроскоп стерео: купить или нет?
  • Как выглядит раковая клетка под микроскопом?
  • Металлографический микроскоп: купить или не стоит?
  • Флуоресцентный микроскоп: цена и особенности
  • Что такое «ионный микроскоп»?
  • Грязь под микроскопом
  • Как выглядит клещ под микроскопом
  • Как выглядит червяк под микроскопом
  • Как выглядят дрожжи под микроскопом
  • Что можно увидеть в микроскоп?
  • Зачем нужны исследовательские микроскопы?
  • Бактерии под микроскопом: фото и особенности наблюдения
  • На что влияет апертура объектива микроскопа?
  • Аскариды под микроскопом: фото и особенности изучения
  • Как использовать микропрепараты для микроскопа
  • Изучаем ГОСТ: микроскопы, соответствующие стандартам
  • Микроскоп инструментальный – купить или нет?
  • Где купить отсчетный микроскоп и зачем он нужен?
  • Атом под электронным микроскопом
  • Как кусает комар под микроскопом
  • Как выглядит муха под микроскопом
  • Амеба: фото под микроскопом
  • Подкованная блоха под микроскопом
  • Вша под микроскопом
  • Плесень хлеба под микроскопом
  • Зубы под микроскопом: фото и особенности наблюдения
  • Снежинка под микроскопом
  • Бабочка под микроскопом: фото и особенности наблюдений
  • Самый мощный микроскоп – как выбрать правильно?
  • Рот пиявки под микроскопом
  • Мошка под микроскопом: челюсти и строение тела
  • Микробы на руках под микроскопом – как увидеть?
  • Вода под микроскопом
  • Как выглядит глист под микроскопом
  • Клетка под световым микроскопом
  • Клетка лука под микроскопом
  • Мозги под микроскопом
  • Кожа человека под микроскопом
  • Кристаллы под микроскопом
  • Основное преимущество световой микроскопии перед электронной
  • Конфокальная флуоресцентная микроскопия
  • Зондовый микроскоп
  • Принцип работы сканирующего зондового микроскопа
  • Почему трудно изготовить рентгеновский микроскоп?
  • Макровинт и микровинт микроскопа – что это такое?
  • Что такое тубус в микроскопе?
  • Главная плоскость поляризатора
  • На что влияет угол между главными плоскостями поляризатора и анализатора?
  • Назначение поляризатора и анализатора
  • Метод изучения – микроскопия на практике
  • Микроскопия осадка мочи: расшифровка
  • Анализ «Микроскопия мазка»
  • Сканирующая электронная микроскопия
  • Методы световой микроскопии
  • Оптическая микроскопия (световая)
  • Световая, люминесцентная, электронная микроскопия – разные методы исследований
  • Темнопольная микроскопия
  • Фазово-контрастная микроскопия
  • Поляризаторы естественного света
  • Шотландский физик, придумавший поляризатор
  • Механизм фокусировки в микроскопе
  • Что такое полевая диафрагма?

www.4glaza.ru

Лейкоциты крови человека | Дистанционные уроки

08-Фев-2014 | Нет комментариев | Лолита Окольнова

Традиционно эритроциты называют красными кровяными клетками, а лейкоциты — белыми клетками крови человека.

 

Лейкоциты — белые кровяные клетки; неоднородная группа различных по внешнему виду и функциям клеток крови человека или животных, выделенная по признакам наличия ядра и отсутствия самостоятельной окраски.

 

Главная сфера действия лейкоцитов — защита. Они играют главную роль в специфической и неспецифической защите организма от внешних и внутренних патогенных агентов, а также в реализации типичных патологических процессов.

 

Виды лейкоцитов

 

лейкоциты крови человека

 

  1.  Лейкоциты, в отличие от эритроцитов, могут не иметь постоянной формы тела, т.к. способны к амебойдному движению:

    лейкоциты крови человека

     

  2. лейкоциты крови человека содержат ядро:
    гранулоциты — у них ядро сегментированно — отсюда и название — внешне это выглядит как гранулы ядра;
    агранулоциты — наоборот, имеют плотненькое цельное ядро;
  3. продолжительность жизни лейкоцитов невелика — всего несколько дней;
  4. «живут» как в кровеносной, так и в лимфатической системе человека, могут даже «протиснуться» к тканям в случае необходимости (лимфоцитам «разрешено находиться» только в лимфосистеме и в тканях, в кровяном русле их нет).

 

Клетки

Функции

Строение

Место образования

Гранулоциты:

1) нейтрофилы

2) эозинофилы

3) базофилы

фагоцитоз бактерий

аллергические реакции

синтез гистамина и гепарина

гранулярное ядро

костный мозг

Агранулоциты:

1)  моноциты

2)  лимфоциты

фагоцитоз бактерий

синтез антител

цельное ядро

костный мозг,

(тимус), лимфосистема, селезенка

 

 

  • Нейтрофилы — защищают организм от инфекций;  это клетки — «камикадзе» — они рождаются, чтобы погибнуть во благо организма.
    Гной — это погибшие нейтрофилы.
    Срок их жизни очень короткий — буквально 1-3 дня. Они постоянно обновляются организмом.
    Краснота вокруг ранки, небольшое набухание — это как раз место скопления нейтрофилов.

 

  • Эозинофилы и Базофилы — отвечают за аллергические реакции организма, они вырабатывают:

 

Гепарин — белок, препятствующий свертыванию крови,

гистамин — инициирует воспалительную реакцию в поврежденных тканях, которая способствует их скорейшему заживлению

 

  • Моноциты — обеспечивают специфический иммунитет человека; они не просто захватывают (фагоцитозом) и нейтрализуют бактерии, а «обучают» лимфоциты, чтобы в дальнейшем они могли противостоять инфекциям.

 

  • Функции лимфоцитов — опознать патогенные, чужеродные вещества в крови человека и выработать на них защиту, более того, организм как бы «запоминает» эту защиту и в дальнейшем легко различает «вредителей» и вырабатывает реакцию по их устранению.
    В отличие от других иммунных клеток, они «долгожители» — срок их жизни может быть несколько десятков лет (!!!).
    Они образуются  человека в раннем возрасте, к моменту редукции вилочковой железы их производство организмом значительно снижается, а к старости вырабатывается все меньше, и меньше…

 

Как видите, лейкоциты крови человека бывают разные, но их объединяет одна очень важная функция — иммунитет.

 


  • в ЕГЭ это вопрос А16 — системы органов человека
  • A17 — Внутренняя среда организма человека
  • A33 — Процессы жизнедеятельности организма человека
  • С5 — вопросы по анатомии
  • в ГИА — А9 — Анатомия и физиология человека

 

 

 

Еще на эту тему:

Обсуждение: "Лейкоциты крови человека"

(Правила комментирования)

distant-lessons.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о